These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27869319)

  • 21. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres.
    Luo Y; Davis JP; Smillie LB; Rall JA
    J Physiol; 2002 Dec; 545(3):887-901. PubMed ID: 12482894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+ dependence of loaded shortening in rat skinned cardiac myocytes and skeletal muscle fibres.
    McDonald KS
    J Physiol; 2000 May; 525 Pt 1(Pt 1):169-81. PubMed ID: 10811735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca(2+)- and Sr(2+)-sensitive ATPase activity of slow skeletal myofibrils in comparison with fast skeletal and cardiac myofibrils.
    Kambara M
    Fukuoka Igaku Zasshi; 1994 Jan; 85(1):5-13. PubMed ID: 8163263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles.
    Kischel P; Stevens L; Mounier Y
    Br J Pharmacol; 1999 Oct; 128(3):767-73. PubMed ID: 10516660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers.
    Patel JR; Diffee GM; Moss RL
    Biophys J; 1996 May; 70(5):2333-40. PubMed ID: 9172757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of Ca2+ control of dog and rabbit cardiac myofibrils by Mg2+. Comparison with rabbit skeletal myofibrils.
    Solaro RJ; Shiner JS
    Circ Res; 1976 Jul; 39(1):8-14. PubMed ID: 132310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils.
    Iorga B; Blaudeck N; Solzin J; Neulen A; Stehle I; Lopez Davila AJ; Pfitzer G; Stehle R
    Cardiovasc Res; 2008 Mar; 77(4):676-86. PubMed ID: 18096573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic mechanism of Ca²⁺-controlled changes of skeletal troponin I in psoas myofibrils.
    Lopez-Davila AJ; Elhamine F; Ruess DF; Papadopoulos S; Iorga B; Kulozik FP; Zittrich S; Solzin J; Pfitzer G; Stehle R
    Biophys J; 2012 Sep; 103(6):1254-64. PubMed ID: 22995498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+_, Sr2+_force relationships and kinetic properties of fast-twitch rat leg muscle fibre subtypes.
    Galler S
    Acta Physiol Scand; 1999 Oct; 167(2):131-41. PubMed ID: 10571548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent.
    Solaro RJ; Rüegg JC
    Circ Res; 1982 Sep; 51(3):290-4. PubMed ID: 6214330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The exchange of Ca(2+)-receptive protein complex (troponin) in the myofibrils of fast and slow skeletal muscles.
    Kawashima A; Shiraishi F; Ohtsuki I; Yamamoto K
    Mol Cell Biochem; 1994 Mar; 132(2):173-7. PubMed ID: 7969100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin.
    Scellini B; Piroddi N; Matyushenko AM; Levitsky DI; Poggesi C; Lehrer SS; Tesi C
    Biophys J; 2017 Jan; 112(2):376-387. PubMed ID: 28122223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent.
    Kitada Y; Kobayashi M; Narimatsu A; Ohizumi Y
    J Pharmacol Exp Ther; 1989 Jul; 250(1):272-7. PubMed ID: 2545860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CK-2127107 amplifies skeletal muscle response to nerve activation in humans.
    Andrews JA; Miller TM; Vijayakumar V; Stoltz R; James JK; Meng L; Wolff AA; Malik FI
    Muscle Nerve; 2018 May; 57(5):729-734. PubMed ID: 29150952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of Mg2+ on the Ca2+ binding to troponin C in rabbit fast skeletal myofibrils.
    Morimoto S
    Biochim Biophys Acta; 1991 Mar; 1073(2):336-40. PubMed ID: 1826217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic mechanism of the Ca2+-dependent switch-on and switch-off of cardiac troponin in myofibrils.
    Solzin J; Iorga B; Sierakowski E; Gomez Alcazar DP; Ruess DF; Kubacki T; Zittrich S; Blaudeck N; Pfitzer G; Stehle R
    Biophys J; 2007 Dec; 93(11):3917-31. PubMed ID: 17704185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The changes in Ca(2+)-sensitivity of rabbit skeletal myofibrillar ATPase activity under various conditions].
    Nakagawa E; Nomura S; Fukuyama S; Shiraishi F; Hatakenaka M
    Fukuoka Igaku Zasshi; 1993 Oct; 84(10):433-5. PubMed ID: 8225156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myofibrillar determinants of rate of relaxation in skinned skeletal muscle fibers.
    Luo Y; Davis JP; Tikunova SB; Smillie LB; Rall JA
    Adv Exp Med Biol; 2003; 538():573-81; discussion 581-2. PubMed ID: 15098700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The off rate of Ca(2+) from troponin C is regulated by force-generating cross bridges in skeletal muscle.
    Wang Y; Kerrick WG
    J Appl Physiol (1985); 2002 Jun; 92(6):2409-18. PubMed ID: 12015355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.