BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27869502)

  • 1. Influence of endophytic Bacillus pumilus and EDTA on the phytoextraction of Cu from soil by using Cicer arietinum.
    Ali B; Amna ; Javed MT; Ali H; Munis MF; Chaudhary HJ
    Int J Phytoremediation; 2017 Jan; 19(1):14-22. PubMed ID: 27869502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant growth promotion and enhanced uptake of Cd by combinatorial application of
    Hayat K; Menhas S; Bundschuh J; Zhou P; Niazi NK; Amna ; Hussain A; Hayat S; Ali H; Wang J; Khan AA; Ali A; Munis FH; Chaudhary HJ
    Int J Phytoremediation; 2020; 22(13):1372-1384. PubMed ID: 32579378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.).
    Kambhampati MS; Vu VT
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):310-3. PubMed ID: 23912229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress.
    Shreya D; Jinal HN; Kartik VP; Amaresan N
    Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens.
    Jiang LY; Yang XE
    J Zhejiang Univ Sci; 2004 Apr; 5(4):450-6. PubMed ID: 14994436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).
    Tjahaja PI; Sukmabuana P; Roosmini D
    Int J Phytoremediation; 2015; 17(10):951-6. PubMed ID: 26208541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.
    Xie Z; Wu L; Chen N; Liu C; Zheng Y; Xu S; Li F; Xu Y
    Int J Phytoremediation; 2012 Sep; 14(8):727-40. PubMed ID: 22908640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil.
    Rehman M; Maqbool Z; Peng D; Liu L
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5851-5861. PubMed ID: 30613880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower.
    Kolbas A; Kidd P; Guinberteau J; Jaunatre R; Herzig R; Mench M
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5370-82. PubMed ID: 25561255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil.
    Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P
    Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils.
    Ghazaryan KA; Movsesyan HS; Minkina TM; Sushkova SN; Rajput VD
    Environ Geochem Health; 2021 Apr; 43(4):1327-1335. PubMed ID: 31140132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.
    Luo J; Qi S; Gu X; Hou T; Lin L
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):259-64. PubMed ID: 26499324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chelate-induced phytoextraction of copper contaminated upland red soil].
    Wu L; Luo Y; Huang H
    Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):435-8. PubMed ID: 11758431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils.
    Khan WU; Ahmad SR; Yasin NA; Ali A; Ahmad A
    Int J Phytoremediation; 2017 Jun; 19(6):514-521. PubMed ID: 27819493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil.
    Lingua G; Todeschini V; Grimaldi M; Baldantoni D; Proto A; Cicatelli A; Biondi S; Torrigiani P; Castiglione S
    J Environ Manage; 2014 Jan; 132():9-15. PubMed ID: 24252633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of lead from firing range soil by Vetiver grass.
    Wilde EW; Brigmon RL; Dunn DL; Heitkamp MA; Dagnan DC
    Chemosphere; 2005 Dec; 61(10):1451-7. PubMed ID: 15964059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.