These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27869643)

  • 1. First-principles calculations of momentum distributions of annihilating electron-positron pairs in defects in UO
    Wiktor J; Jomard G; Torrent M; Bertolus M
    J Phys Condens Matter; 2017 Jan; 29(3):035503. PubMed ID: 27869643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.
    Makkonen I; Korhonen E; Prozheeva V; Tuomisto F
    J Phys Condens Matter; 2016 Jun; 28(22):224002. PubMed ID: 26952670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding STM images and EELS spectra of oxides with strongly correlated electrons: a comparison of nickel and uranium oxides.
    Dudarev SL; Castell MR; Botton GA; Savrasov SY; Muggelberg C; Briggs GA; Sutton AP; Goddard DT
    Micron; 2000 Aug; 31(4):363-72. PubMed ID: 10741607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doppler broadening of in-flight positron annihilation radiation due to electron momentum.
    Hunt AW; Cassidy DB; Sterne PA; Cowan TE; Howell RH; Lynn KG; Golevchenko JA
    Phys Rev Lett; 2001 Jun; 86(24):5612-5. PubMed ID: 11415314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding xenon and vacancy behavior in UO
    Zhao J; Sun D; Xi L; Chen P; Zhao J; Wang Y
    Phys Chem Chem Phys; 2023 May; 25(21):14928-14941. PubMed ID: 37203449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of positron annihilation parameters for cation mono-vacancies and vacancy complexes in nitride semiconductor alloys.
    Ishibashi S; Uedono A; Kino H; Miyake T; Terakura K
    J Phys Condens Matter; 2019 Nov; 31(47):475401. PubMed ID: 31429422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-stop time-of-flight spectrometer for the measurement of positron annihilation-induced electrons in coincidence with the Doppler-shifted annihilation gamma photon.
    Chirayath VA; Gladen RW; McDonald AD; Fairchild AJ; Joglekar PV; Satyal S; Lim ZH; Shead TN; Chrysler MD; Mukherjee S; Barnett BM; Byrnes NK; Koymen AR; Greaves RG; Weiss AH
    Rev Sci Instrum; 2020 Mar; 91(3):033903. PubMed ID: 32260020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Positron Cooling in Noble Gases via Annihilation γ Spectra.
    Green DG
    Phys Rev Lett; 2017 Nov; 119(20):203404. PubMed ID: 29219359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.
    Czekner J; Lopez GV; Wang LS
    J Chem Phys; 2014 Dec; 141(24):244302. PubMed ID: 25554146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacancy-impurity complexes in highly Sb-doped Si grown by molecular beam epitaxy.
    Rummukainen M; Makkonen I; Ranki V; Puska MJ; Saarinen K; Gossmann HJ
    Phys Rev Lett; 2005 Apr; 94(16):165501. PubMed ID: 15904239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk, surface and point defect properties in UO2 from a tight-binding variable-charge model.
    Sattonnay G; Tétot R
    J Phys Condens Matter; 2013 Mar; 25(12):125403. PubMed ID: 23448714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and spectral assignments of mixed actinide oxide samples using laser-induced breakdown spectroscopy (LIBS).
    Barefield JE; Judge EJ; Berg JM; Willson SP; Le LA; Lopez LN
    Appl Spectrosc; 2013 Apr; 67(4):433-40. PubMed ID: 23601543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method.
    Adamson PE; Duan XF; Burggraf LW; Pak MV; Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2008 Feb; 112(6):1346-51. PubMed ID: 18215029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Krypton Diffusion Coefficients in Uranium Dioxide Using Atomic Scale Calculations.
    Vathonne E; Andersson DA; Freyss M; Perriot R; Cooper MW; Stanek CR; Bertolus M
    Inorg Chem; 2017 Jan; 56(1):125-137. PubMed ID: 27983828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of point defects in pulsed-laser-melted Ge
    Steuer O; Liedke MO; Butterling M; Schwarz D; Schulze J; Li Z; Wagner A; Fischer IA; Hübner R; Zhou S; Helm M; Cuniberti G; Georgiev YM; Prucnal S
    J Phys Condens Matter; 2023 Nov; 36(8):. PubMed ID: 37931296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Monte Carlo study of a positron in an electron gas.
    Drummond ND; López Ríos P; Needs RJ; Pickard CJ
    Phys Rev Lett; 2011 Nov; 107(20):207402. PubMed ID: 22181773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining charge state of graphene vacancy by noncontact atomic force microscopy and first-principles calculations.
    Liu Y; Weinert M; Li L
    Nanotechnology; 2015 Jan; 26(3):035702. PubMed ID: 25549100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mn(2+)-induced substitutional structural changes in ZnS nanoparticles as observed from positron annihilation studies.
    Biswas S; Kar S; Chaudhuri S; Nambissan PM
    J Phys Condens Matter; 2008 Jun; 20(23):235226. PubMed ID: 21694317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Vacancy Behavior on Precipitate Formation in a Reduced-Activation V-Cr-Mn Medium-Entropy Alloy.
    Wang T; Zhu T; Wang D; Zhang P; Song Y; Ye F; Wang Q; Jin S; Yu R; Liu F; Kuang P; Wang B; Li L; Cao X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positron Annihilation Spectroscopy of KCl (Zn) crystals.
    Biganeh A; Kakuee O; Rafi-Kheiri H
    Appl Radiat Isot; 2020 Dec; 166():109330. PubMed ID: 32795699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.