These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 27869685)
1. Three-Dimensional Biologically Relevant Spectrum (BRS-3D): Shape Similarity Profile Based on PDB Ligands as Molecular Descriptors. Hu B; Kuang ZK; Feng SY; Wang D; He SB; Kong DX Molecules; 2016 Nov; 21(11):. PubMed ID: 27869685 [TBL] [Abstract][Full Text] [Related]
2. Predicting subtype selectivity of dopamine receptor ligands with three-dimensional biologically relevant spectrum. Kuang ZK; Feng SY; Hu B; Wang D; He SB; Kong DX Chem Biol Drug Des; 2016 Dec; 88(6):859-872. PubMed ID: 27390270 [TBL] [Abstract][Full Text] [Related]
3. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D). He SB; Ben Hu ; Kuang ZK; Wang D; Kong DX Sci Rep; 2016 Nov; 6():36595. PubMed ID: 27812030 [TBL] [Abstract][Full Text] [Related]
4. Ligand and decoy sets for docking to G protein-coupled receptors. Gatica EA; Cavasotto CN J Chem Inf Model; 2012 Jan; 52(1):1-6. PubMed ID: 22168315 [TBL] [Abstract][Full Text] [Related]
5. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors. Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085 [TBL] [Abstract][Full Text] [Related]
6. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. Evers A; Hessler G; Matter H; Klabunde T J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144 [TBL] [Abstract][Full Text] [Related]
7. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: combination of 2D/3D similarity screening, molecular docking and molecular dynamics. Kumar R; Jade D; Gupta D J Biomol Struct Dyn; 2019 Mar; 37(4):931-943. PubMed ID: 29468945 [TBL] [Abstract][Full Text] [Related]
8. Molecular interaction fingerprint approaches for GPCR drug discovery. Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316 [TBL] [Abstract][Full Text] [Related]
9. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. Cross JB Methods Mol Biol; 2018; 1705():233-264. PubMed ID: 29188566 [TBL] [Abstract][Full Text] [Related]
10. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition. Wei NN; Hamza A J Chem Inf Model; 2014 Jan; 54(1):338-46. PubMed ID: 24328054 [TBL] [Abstract][Full Text] [Related]
11. Virtual screening of GPCRs: an in silico chemogenomics approach. Jacob L; Hoffmann B; Stoven V; Vert JP BMC Bioinformatics; 2008 Sep; 9():363. PubMed ID: 18775075 [TBL] [Abstract][Full Text] [Related]
12. GPCR homology model template selection benchmarking: Global versus local similarity measures. Castleman PN; Sears CK; Cole JA; Baker DL; Parrill AL J Mol Graph Model; 2019 Jan; 86():235-246. PubMed ID: 30390544 [TBL] [Abstract][Full Text] [Related]
13. mRAISE: an alternative algorithmic approach to ligand-based virtual screening. von Behren MM; Bietz S; Nittinger E; Rarey M J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795 [TBL] [Abstract][Full Text] [Related]
14. sc-PDB: an annotated database of druggable binding sites from the Protein Data Bank. Kellenberger E; Muller P; Schalon C; Bret G; Foata N; Rognan D J Chem Inf Model; 2006; 46(2):717-27. PubMed ID: 16563002 [TBL] [Abstract][Full Text] [Related]
15. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. Kumar A; Zhang KY J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214 [TBL] [Abstract][Full Text] [Related]
16. Computational Prediction of Compound-Protein Interactions for Orphan Targets Using CGBVS. Kanai C; Kawasaki E; Murakami R; Morita Y; Yoshimori A Molecules; 2021 Aug; 26(17):. PubMed ID: 34500569 [TBL] [Abstract][Full Text] [Related]
17. Characterizing common substructures of ligands for GPCR protein subfamilies. Erguner B; Hattori M; Goto S; Kanehisa M Genome Inform; 2010; 24():31-41. PubMed ID: 22081587 [TBL] [Abstract][Full Text] [Related]
18. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey. Kratochwil NA; Gatti-McArthur S; Hoener MC; Lindemann L; Christ AD; Green LG; Guba W; Martin RE; Malherbe P; Porter RH; Slack JP; Winnig M; Dehmlow H; Grether U; Hertel C; Narquizian R; Panousis CG; Kolczewski S; Steward L Curr Top Med Chem; 2011; 11(15):1902-24. PubMed ID: 21470172 [TBL] [Abstract][Full Text] [Related]
20. An unbiased method to build benchmarking sets for ligand-based virtual screening and its application to GPCRs. Xia J; Jin H; Liu Z; Zhang L; Wang XS J Chem Inf Model; 2014 May; 54(5):1433-50. PubMed ID: 24749745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]