These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27869847)

  • 21. Design and calibration of a digital Fourier holographic microscope for particle sizing via goniometry and optical scatter imaging in transmission.
    Rossi VM; Jacques SL
    Opt Express; 2016 Jun; 24(12):12788-802. PubMed ID: 27410298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved technique for data inversion: optical sizing of multicomponent aerosols.
    Dubovik OV; Lapyonok TV; Oshchepkov SL
    Appl Opt; 1995 Dec; 34(36):8422-36. PubMed ID: 21068963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier.
    Rajwa B; Venkatapathi M; Ragheb K; Banada PP; Hirleman ED; Lary T; Robinson JP
    Cytometry A; 2008 Apr; 73(4):369-79. PubMed ID: 18163466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particles small angle forward-scattered light measurement based on photovoltaic cell microflow cytometer.
    Chen HT; Fu LM; Huang HH; Shu WE; Wang YN
    Electrophoresis; 2014 Feb; 35(2-3):337-44. PubMed ID: 24002889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sizing of irregular particles using a near backscattered laser Doppler system.
    Wu X; Grehan G; Cen K; Ren KF; Wang Q; Luo Z; Fang M
    Appl Opt; 2007 Dec; 46(36):8600-8. PubMed ID: 18091970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of submicron (0.1-1 μm) particles in therapeutic proteins by nanoparticle tracking analysis.
    Vasudev R; Mathew S; Afonina N
    J Pharm Sci; 2015 May; 104(5):1622-31. PubMed ID: 25737284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size and refractive index of individual marine participates: a flow cytometric approach.
    Ackleson SG; Spinrad RW
    Appl Opt; 1988 Apr; 27(7):1270-7. PubMed ID: 20531553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle sizing with a simple differential light-scattering photometer: homogeneous spherical particles.
    Grasso V; Neri F; Fucile E
    Appl Opt; 1997 Apr; 36(12):2452-8. PubMed ID: 18253226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function.
    Zhang X; Twardowski M; Lewis M
    Appl Opt; 2011 Mar; 50(9):1240-59. PubMed ID: 21460996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of particle sizes, concentration, and refractive index in measurement of light transmittance in the forward-scattering-angle range.
    Nefedov AP; Petrov OF; Vaulina OS
    Appl Opt; 1997 Feb; 36(6):1357-66. PubMed ID: 18250810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the volume scattering function of aqueous particle suspensions with a laboratory multi-angle light scattering instrument.
    Babin M; Stramski D; Reynolds RA; Wright VM; Leymarie E
    Appl Opt; 2012 Jun; 51(17):3853-73. PubMed ID: 22695665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of the Electrostatic Classification Method to Size 0.1 μm SRM Particles-A Feasibility Study.
    Kinney PD; Pui DY; Mulliolland GW; Bryner NP
    J Res Natl Inst Stand Technol; 1991; 96(2):147-176. PubMed ID: 28184107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variance Between Different Light Obscuration and Flow Imaging Microscopy Instruments and the Impact of Instrument Calibration.
    Matter A; Koulov A; Singh S; Mahler HC; Reinisch H; Langer C; Zucol B; Mathaes R
    J Pharm Sci; 2019 Jul; 108(7):2397-2405. PubMed ID: 30844365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach.
    Hovenac EA
    Appl Opt; 1991 Nov; 30(33):4739-46. PubMed ID: 20717276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles.
    Zhang X; Gray DJ; Huot Y; You Y; Bi L
    Appl Opt; 2012 Jul; 51(21):5085-99. PubMed ID: 22858949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins.
    Zhou C; Krueger AB; Barnard JG; Qi W; Carpenter JF
    J Pharm Sci; 2015 Aug; 104(8):2441-50. PubMed ID: 26017684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical particle sizing for in situ measurements Part 1.
    Holve D; Self SA
    Appl Opt; 1979 May; 18(10):1632-45. PubMed ID: 20212904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retrieval of size and refractive index of spherical particles by multiangle light scattering: neural network method application.
    Berdnik VV; Loiko VA
    Appl Opt; 2009 Nov; 48(32):6178-87. PubMed ID: 19904314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.