These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27870045)

  • 1. Unprecedented remote sensing data over King and Rim megafires in the Sierra Nevada Mountains of California.
    Stavros EN; Tane Z; Kane VR; Veraverbeke S; McGaughey RJ; Lutz JA; Ramirez C; Schimel D
    Ecology; 2016 Nov; 97(11):3244. PubMed ID: 27870045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconstructing the King megafire.
    Coen JL; Stavros EN; Fites-Kaufman JA
    Ecol Appl; 2018 Sep; 28(6):1565-1580. PubMed ID: 29797684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air-Quality Impacts and Intake Fraction of PM
    Navarro KM; Cisneros R; O'Neill SM; Schweizer D; Larkin NK; Balmes JR
    Environ Sci Technol; 2016 Nov; 50(21):11965-11973. PubMed ID: 27652495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilience of reptiles to megafires.
    Santos X; Belliure J; Gonçalves JF; Pausas JG
    Ecol Appl; 2022 Mar; 32(2):e2518. PubMed ID: 34918831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite].
    Yu C; Chen LF; Li SS; Tao JH; Su L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):739-45. PubMed ID: 26117890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.
    Keeley JE; Zedler PH
    Ecol Appl; 2009 Jan; 19(1):69-94. PubMed ID: 19323174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Forest fire division by using MODIS data based on the temporal-spatial variation law].
    He C; He C; Gong YX; Zhang SY; He TF; Chen F; Sun Y; Feng ZK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2472-7. PubMed ID: 24369655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.
    Schweizer D; Cisneros R; Traina S; Ghezzehei TA; Shaw G
    J Environ Manage; 2017 Oct; 201():345-356. PubMed ID: 28692834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.
    Zhang JH; Yao FM; Liu C; Yang LM; Boken VK
    Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-fire vegetation and fuel development influences fire severity patterns in reburns.
    Coppoletta M; Merriam KE; Collins BM
    Ecol Appl; 2016 Apr; 26(3):686-99. PubMed ID: 27411243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multitemporal lidar captures heterogeneity in fuel loads and consumption on the Kaibab Plateau.
    Bright BC; Hudak AT; McCarley TR; Spannuth A; Sánchez-López N; Ottmar RD; Soja AJ
    Fire Ecol; 2022; 18(1):18. PubMed ID: 36017330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.
    Tedim F; Remelgado R; Martins J; Carvalho S
    J Environ Biol; 2015 Jan; 36 Spec No():133-43. PubMed ID: 26591893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fire severity and ecosytem responses following crown fires in California shrublands.
    Keeley JE; Brennan T; Pfaff AH
    Ecol Appl; 2008 Sep; 18(6):1530-46. PubMed ID: 18767627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A focus group study of factors that promote and constrain the use of satellite-derived fire products by resource managers in southern Africa.
    Trigg SN; Roy DP
    J Environ Manage; 2007 Jan; 82(1):95-110. PubMed ID: 16677754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing of vegetation conditions after post-fire mulch treatments.
    Vo VD; Kinoshita AM
    J Environ Manage; 2020 Apr; 260():109993. PubMed ID: 32090797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.
    Jones MO; Kimball JS; Jones LA
    Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data.
    Ramo R; Roteta E; Bistinas I; van Wees D; Bastarrika A; Chuvieco E; van der Werf GR
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.
    Fernández-Guisuraga JM; Sanz-Ablanedo E; Suárez-Seoane S; Calvo L
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.
    Meng R; Dennison PE; D'Antonio CM; Moritz MA
    PLoS One; 2014; 9(10):e110637. PubMed ID: 25337785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.