These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27870059)
1. Transfer of Pickles BJ; Wilhelm R; Asay AK; Hahn AS; Simard SW; Mohn WW New Phytol; 2017 Apr; 214(1):400-411. PubMed ID: 27870059 [TBL] [Abstract][Full Text] [Related]
2. Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Plamboeck AH; Dawson TE; Egerton-Warburton LM; North M; Bruns TD; Querejeta JI Mycorrhiza; 2007 Jul; 17(5):439-447. PubMed ID: 17333298 [TBL] [Abstract][Full Text] [Related]
3. Ectomycorrhizal fungi of Douglas-fir retain newly assimilated carbon derived from neighboring European beech. Audisio M; Muhr J; Polle A New Phytol; 2024 Sep; 243(5):1980-1990. PubMed ID: 38952235 [TBL] [Abstract][Full Text] [Related]
4. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. Pickles BJ; Twieg BD; O'Neill GA; Mohn WW; Simard SW New Phytol; 2015 Aug; 207(3):858-71. PubMed ID: 25757098 [TBL] [Abstract][Full Text] [Related]
5. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Ford CR; Wurzburger N; Hendrick RL; Teskey RO Tree Physiol; 2007 Mar; 27(3):375-83. PubMed ID: 17241979 [TBL] [Abstract][Full Text] [Related]
6. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489 [TBL] [Abstract][Full Text] [Related]
7. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum. Grove S; Saarman NP; Gilbert GS; Faircloth B; Haubensak KA; Parker IM Ecol Appl; 2019 Apr; 29(3):e01867. PubMed ID: 30710404 [TBL] [Abstract][Full Text] [Related]
8. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. Wen Z; Shi L; Tang Y; Hong L; Xue J; Xing J; Chen Y; Nara K Mycorrhiza; 2018 Jan; 28(1):49-58. PubMed ID: 28942552 [TBL] [Abstract][Full Text] [Related]
9. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Dučić T; Parladé J; Polle A Mycorrhiza; 2008 Jul; 18(5):227-239. PubMed ID: 18437431 [TBL] [Abstract][Full Text] [Related]
10. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Schoonmaker AL; Teste FP; Simard SW; Guy RD Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766 [TBL] [Abstract][Full Text] [Related]
11. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Teste FP; Simard SW Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333 [TBL] [Abstract][Full Text] [Related]
12. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. Kaiser C; Kilburn MR; Clode PL; Fuchslueger L; Koranda M; Cliff JB; Solaiman ZM; Murphy DV New Phytol; 2015 Mar; 205(4):1537-1551. PubMed ID: 25382456 [TBL] [Abstract][Full Text] [Related]
13. Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? Cline ET; Ammirati JF; Edmonds RL New Phytol; 2005 Jun; 166(3):993-1009. PubMed ID: 15869658 [TBL] [Abstract][Full Text] [Related]
14. Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. Dosskey MG; Linderman RG; Boersma L New Phytol; 1990 Jun; 115(2):269-274. PubMed ID: 33873954 [TBL] [Abstract][Full Text] [Related]
15. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings. Kazantseva O; Bingham M; Simard SW; Berch SM Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155 [TBL] [Abstract][Full Text] [Related]
16. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Teste FP; Karst J; Jones MD; Simard SW; Durall DM Mycorrhiza; 2006 Dec; 17(1):51-65. PubMed ID: 17106724 [TBL] [Abstract][Full Text] [Related]
17. The potential role of ectomycorrhizal fungi in determining Douglas-fir resistance to defoliation by the western spruce budworm (Lepidoptera: Tortricidae). Palermo BL; Clancy KM; Koch GW J Econ Entomol; 2003 Jun; 96(3):783-91. PubMed ID: 12852617 [TBL] [Abstract][Full Text] [Related]
18. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Horton TR; Molina R; Hood K Mycorrhiza; 2005 Sep; 15(6):393-403. PubMed ID: 16021480 [TBL] [Abstract][Full Text] [Related]
19. Carbon and nitrogen gain during the growth of orchid seedlings in nature. Stöckel M; Těšitelová T; Jersáková J; Bidartondo MI; Gebauer G New Phytol; 2014 Apr; 202(2):606-615. PubMed ID: 24444001 [TBL] [Abstract][Full Text] [Related]
20. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils. Pickles BJ; Gorzelak MA; Green DS; Egger KN; Massicotte HB Mycorrhiza; 2015 Oct; 25(7):517-31. PubMed ID: 25694036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]