These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27870240)

  • 21. Polypharmacology: in silico methods of ligand design and development.
    McKie SA
    Future Med Chem; 2016 Apr; 8(5):579-602. PubMed ID: 27105127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mining significant substructure pairs for interpreting polypharmacology in drug-target network.
    Takigawa I; Tsuda K; Mamitsuka H
    PLoS One; 2011 Feb; 6(2):e16999. PubMed ID: 21373195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution view of compound promiscuity.
    Hu Y; Bajorath J
    F1000Res; 2013; 2():144. PubMed ID: 24358872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adapting the DeepSARM approach for dual-target ligand design.
    Yoshimori A; Hu H; Bajorath J
    J Comput Aided Mol Des; 2021 May; 35(5):587-600. PubMed ID: 33712972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring drug promiscuity over time.
    Hu Y; Bajorath J
    F1000Res; 2014; 3():218. PubMed ID: 25352982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Web-Based Tools for Polypharmacology Prediction.
    Awale M; Reymond JL
    Methods Mol Biol; 2019; 1888():255-272. PubMed ID: 30519952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural diversity and potency range distribution of scaffolds from compounds active against current pharmaceutical targets.
    Kayastha S; Dimova D; Stumpfe D; Bajorath J
    Future Med Chem; 2015; 7(2):111-22. PubMed ID: 25686001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of ligand-target interaction data in ChEMBL is associated with increasing and activity measurement-dependent compound promiscuity.
    Hu Y; Bajorath J
    J Chem Inf Model; 2012 Oct; 52(10):2550-8. PubMed ID: 22978710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GES polypharmacology fingerprints: a novel approach for drug repositioning.
    Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW
    J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of search parameters and criteria on compound selection, promiscuity, and pan assay interference characteristics.
    Hu Y; Bajorath J
    J Chem Inf Model; 2014 Nov; 54(11):3056-66. PubMed ID: 25329977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs.
    Hu H; Bajorath J
    Bioorg Med Chem; 2020 Jan; 28(1):115238. PubMed ID: 31818631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward an efficient approach to identify molecular scaffolds possessing selective or promiscuous compounds.
    Yongye AB; Medina-Franco JL
    Chem Biol Drug Des; 2013 Oct; 82(4):367-75. PubMed ID: 23659738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment.
    Salentin S; Haupt VJ; Daminelli S; Schroeder M
    Prog Biophys Mol Biol; 2014; 116(2-3):174-86. PubMed ID: 24923864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MTLD, a Database of Multiple Target Ligands, the Updated Version.
    Chen C; Wu M; Cen S; Wu J; Zhou J
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28878188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Guided Design of G-Protein-Coupled Receptor Polypharmacology.
    Kampen S; Duy Vo D; Zhang X; Panel N; Yang Y; Jaiteh M; Matricon P; Svenningsson P; Brea J; Loza MI; Kihlberg J; Carlsson J
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18022-18030. PubMed ID: 33904641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.