These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27870250)

  • 1. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8.
    Premchandar A; Kupniewska A; Bonna A; Faure G; Fraczyk T; Roldan A; Hoffmann B; Faria da Cunha M; Herrmann H; Lukacs GL; Edelman A; Dadlez M
    Protein Sci; 2017 Feb; 26(2):343-354. PubMed ID: 27870250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.
    Lewis HA; Wang C; Zhao X; Hamuro Y; Conners K; Kearins MC; Lu F; Sauder JM; Molnar KS; Coales SJ; Maloney PC; Guggino WB; Wetmore DR; Weber PC; Hunt JF
    J Mol Biol; 2010 Feb; 396(2):406-30. PubMed ID: 19944699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.
    Odolczyk N; Fritsch J; Norez C; Servel N; da Cunha MF; Bitam S; Kupniewska A; Wiszniewski L; Colas J; Tarnowski K; Tondelier D; Roldan A; Saussereau EL; Melin-Heschel P; Wieczorek G; Lukacs GL; Dadlez M; Faure G; Herrmann H; Ollero M; Becq F; Zielenkiewicz P; Edelman A
    EMBO Mol Med; 2013 Oct; 5(10):1484-501. PubMed ID: 23982976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis.
    Soya N; Roldan A; Lukacs GL
    Methods Mol Biol; 2019; 1873():53-67. PubMed ID: 30341603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis.
    Pagano MA; Arrigoni G; Marin O; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA
    Biochemistry; 2008 Jul; 47(30):7925-36. PubMed ID: 18597485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter.
    Phuan PW; Veit G; Tan JA; Roldan A; Finkbeiner WE; Haggie PM; Lukacs GL; Verkman AS
    SLAS Discov; 2018 Sep; 23(8):823-831. PubMed ID: 29533733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect.
    Colas J; Faure G; Saussereau E; Trudel S; Rabeh WM; Bitam S; Guerrera IC; Fritsch J; Sermet-Gaudelus I; Davezac N; Brouillard F; Lukacs GL; Herrmann H; Ollero M; Edelman A
    Hum Mol Genet; 2012 Feb; 21(3):623-34. PubMed ID: 22038833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function.
    Rabeh WM; Bossard F; Xu H; Okiyoneda T; Bagdany M; Mulvihill CM; Du K; di Bernardo S; Liu Y; Konermann L; Roldan A; Lukacs GL
    Cell; 2012 Jan; 148(1-2):150-63. PubMed ID: 22265408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/deltaF508-CFTR to the plasma membrane.
    Davezac N; Tondelier D; Lipecka J; Fanen P; Demaugre F; Debski J; Dadlez M; Schrattenholz A; Cahill MA; Edelman A
    Proteomics; 2004 Dec; 4(12):3833-44. PubMed ID: 15529338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
    Serohijos AW; Hegedus T; Riordan JR; Dokholyan NV
    PLoS Comput Biol; 2008 Feb; 4(2):e1000008. PubMed ID: 18463704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.
    Belmonte L; Moran O
    Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR.
    He L; Aleksandrov LA; Cui L; Jensen TJ; Nesbitt KL; Riordan JR
    FASEB J; 2010 Aug; 24(8):3103-12. PubMed ID: 20233947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase CK2, cystic fibrosis transmembrane conductance regulator, and the deltaF508 mutation: F508 deletion disrupts a kinase-binding site.
    Treharne KJ; Crawford RM; Xu Z; Chen JH; Best OG; Schulte EA; Gruenert DC; Wilson SM; Sheppard DN; Kunzelmann K; Mehta A
    J Biol Chem; 2007 Apr; 282(14):10804-13. PubMed ID: 17289674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR.
    Treharne KJ; Xu Z; Chen JH; Best OG; Cassidy DM; Gruenert DC; Hegyi P; Gray MA; Sheppard DN; Kunzelmann K; Mehta A
    Cell Physiol Biochem; 2009; 24(5-6):347-60. PubMed ID: 19910675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance.
    Rusnati M; Sala D; Orro A; Bugatti A; Trombetti G; Cichero E; Urbinati C; Di Somma M; Millo E; Galietta LJV; Milanesi L; Fossa P; D'Ursi P
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29316712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomechanics combined with HDX reveals allosteric drug binding sites of CFTR NBD1.
    Padányi R; Farkas B; Tordai H; Kiss B; Grubmüller H; Soya N; Lukács GL; Kellermayer M; Hegedűs T
    Comput Struct Biotechnol J; 2022; 20():2587-2599. PubMed ID: 35685375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
    Kanelis V; Hudson RP; Thibodeau PH; Thomas PJ; Forman-Kay JD
    EMBO J; 2010 Jan; 29(1):263-77. PubMed ID: 19927121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.