BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 27870991)

  • 1. Potts Hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness.
    Levy RM; Haldane A; Flynn WF
    Curr Opin Struct Biol; 2017 Apr; 43():55-62. PubMed ID: 27870991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural propensities of kinase family proteins from a Potts model of residue co-variation.
    Haldane A; Flynn WF; He P; Vijayan RS; Levy RM
    Protein Sci; 2016 Aug; 25(8):1378-84. PubMed ID: 27241634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potts Hamiltonian Models and Molecular Dynamics Free Energy Simulations for Predicting the Impact of Mutations on Protein Kinase Stability.
    Thakur A; Gizzio J; Levy RM
    J Phys Chem B; 2024 Feb; 128(7):1656-1667. PubMed ID: 38350894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of multiple-sequence-alignment depth on Potts statistical models of protein covariation.
    Haldane A; Levy RM
    Phys Rev E; 2019 Mar; 99(3-1):032405. PubMed ID: 30999494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring protein fitness landscapes from laboratory evolution experiments.
    D'Costa S; Hinds EC; Freschlin CR; Song H; Romero PA
    PLoS Comput Biol; 2023 Mar; 19(3):e1010956. PubMed ID: 36857380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo functional phenotypes from a computational epistatic model of evolution.
    Alvarez S; Nartey CM; Mercado N; de la Paz JA; Huseinbegovic T; Morcos F
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2308895121. PubMed ID: 38285950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generative capacity of probabilistic protein sequence models.
    McGee F; Hauri S; Novinger Q; Vucetic S; Levy RM; Carnevale V; Haldane A
    Nat Commun; 2021 Nov; 12(1):6302. PubMed ID: 34728624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution.
    Dasmeh P; Serohijos AWR
    Proteins; 2018 Dec; 86(12):1242-1250. PubMed ID: 30039542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models.
    Jacquin H; Gilson A; Shakhnovich E; Cocco S; Monasson R
    PLoS Comput Biol; 2016 May; 12(5):e1004889. PubMed ID: 27177270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of epistatic effects in a key mitochondrial protein.
    Nelson ED; Grishin NV
    Phys Rev E; 2018 Jun; 97(6-1):062404. PubMed ID: 30011480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
    du Plessis L; Leventhal GE; Bonhoeffer S
    Mol Biol Evol; 2016 Sep; 33(9):2454-68. PubMed ID: 27189564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Range Epistasis Mediated by Structural Change in a Model of Ligand Binding Proteins.
    Nelson ED; Grishin NV
    PLoS One; 2016; 11(11):e0166739. PubMed ID: 27870911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular coevolution and its applications: Going from structure prediction toward signaling, epistasis, and function.
    Zerihun MB; Schug A
    Biochem Soc Trans; 2017 Dec; 45(6):1253-1261. PubMed ID: 29054926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular ensembles make evolution unpredictable.
    Sailer ZR; Harms MJ
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11938-11943. PubMed ID: 29078365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinatoric exploration of novel folded structures: a heteropolymer-based model of protein evolutionary landscapes.
    Cui Y; Wong WH; Bornberg-Bauer E; Chan HS
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):809-14. PubMed ID: 11805332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes.
    Qiao W; Akhter N; Fang X; Maximova T; Plaku E; Shehu A
    BMC Genomics; 2018 Sep; 19(Suppl 7):671. PubMed ID: 30255791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
    Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G
    J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary constraints in fitness landscapes.
    Ferretti L; Weinreich D; Tajima F; Achaz G
    Heredity (Edinb); 2018 Nov; 121(5):466-481. PubMed ID: 29993041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the fitness landscapes of lattice proteins.
    Renner A; Bornberg-Bauer E
    Pac Symp Biocomput; 1997; ():361-72. PubMed ID: 9390306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical analysis of mutational epistasis to reveal intramolecular interaction networks in proteins.
    Miton CM; Chen JZ; Ost K; Anderson DW; Tokuriki N
    Methods Enzymol; 2020; 643():243-280. PubMed ID: 32896284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.