These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27871100)

  • 21. Foot-Ankle Fractures and Injury Probability Curves from Post-mortem Human Surrogate Tests.
    Yoganandan N; Chirvi S; Pintar FA; Uppal H; Schlick M; Banerjee A; Voo L; Merkle A; Kleinberger M
    Ann Biomed Eng; 2016 Oct; 44(10):2937-2947. PubMed ID: 27052746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Foot-Ankle-Leg Injuries in Various Under-Foot Impact Loading Environments With a Human Active Lower Limb Model.
    Huang J; Huang C; Mo F
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34382656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of ankle posture on the load pathway through the hindfoot.
    Smolen C; Quenneville CE
    Proc Inst Mech Eng H; 2016 Nov; 230(11):1024-1035. PubMed ID: 27694402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading.
    Quenneville CE; Dunning CE
    Traffic Inj Prev; 2012; 13(1):81-5. PubMed ID: 22239148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Human Surrogate Responses in Underbody Blast Loading Conditions.
    Ott K; Drewry D; Luongo M; Andrist J; Armiger R; Titus J; Demetropoulos C
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32154843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid III Lower Leg Injury Assessment Reference Curves Under Axial Impacts Using Matched-Pair Tests.
    Yoganandan N; Pintar F; Banerjee A; Schlick M; Chirvi S; Uppal H; Merkle A; Voo L; Kleinberg M
    Biomed Sci Instrum; 2015; 51():230-7. PubMed ID: 25996722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal corridors of forces and moments, and injuries to pelvis-lumbar spine in vertical impact simulating underbody blast.
    Yoganandan N; Humm J; Baisden J; Moore J; Pintar F; Wassick M; Barnes D; Loftis K
    J Biomech; 2023 Mar; 150():111490. PubMed ID: 36878113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.
    McKay BJ; Bir CA
    Stapp Car Crash J; 2009 Nov; 53():229-49. PubMed ID: 20058557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neck Injury Response in High Vertical Accelerations and its Algorithmical Formalization to Mitigate Neck Injuries.
    Klima J; Kang J; Meldrum A; Pankiewicz S
    Stapp Car Crash J; 2017 Nov; 61():211-225. PubMed ID: 29394440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading.
    Butz K; Spurlock C; Roy R; Bell C; Barrett P; Ward A; Xiao X; Shirley A; Welch C; Lister K
    Stapp Car Crash J; 2017 Nov; 61():175-209. PubMed ID: 29394439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the effectiveness of toe board energy-absorbing material for foot, ankle, and lower leg injury reduction.
    Patalak JP; Stitzel JD
    Traffic Inj Prev; 2018 Feb; 19(2):195-200. PubMed ID: 28696780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical and injury response of human foot and ankle under complex loading.
    Shin J; Untaroiu CD
    J Biomech Eng; 2013 Oct; 135(10):101008. PubMed ID: 23897434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the Whole Body Spine Response to Sub-Injurious Vertical Loading.
    Ott KA; Demetropoulos CK; Luongo ME; Titus JM; Merkle AC; Drewry DG
    Ann Biomed Eng; 2021 Nov; 49(11):3099-3117. PubMed ID: 33094416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro kinematics of the axially loaded ankle complex in response to dorsiflexion and plantarflexion.
    Hintermann B; Nigg BM
    Foot Ankle Int; 1995 Aug; 16(8):514-8. PubMed ID: 8520666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts.
    Martinez AA; Chakravarty AB; Quenneville CE
    J Mech Behav Biomed Mater; 2018 Feb; 78():315-320. PubMed ID: 29197302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Injury Risk Function for the Leg, Foot, and Ankle Exposed to Axial Impact Loading Using Force and Impulse.
    Bailey AM; McMurry TL; Salzar RS; Crandall JR
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30453328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A closed-loop cadaveric foot and ankle loading model.
    Hansen ML; Otis JC; Kenneally SM; Deland JT
    J Biomech; 2001 Apr; 34(4):551-5. PubMed ID: 11266681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injuries in Full-Scale Vehicle Side Impact Moving Deformable Barrier and Pole Tests Using Postmortem Human Subjects.
    Yoganandan N; Pintar F; Humm J; Rudd R
    Traffic Inj Prev; 2015; 16 Suppl 2():S224-30. PubMed ID: 26436236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hindfoot coronal alignment: a modified radiographic method.
    Johnson JE; Lamdan R; Granberry WF; Harris GF; Carrera GF
    Foot Ankle Int; 1999 Dec; 20(12):818-25. PubMed ID: 10609713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syndesmosis fixation using dual 3.5 mm and 4.5 mm screws with tricortical and quadricortical purchase: a biomechanical study.
    Markolf KL; Jackson SR; McAllister DR
    Foot Ankle Int; 2013 May; 34(5):734-9. PubMed ID: 23405026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.