BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1265 related articles for article (PubMed ID: 27871992)

  • 1. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.
    Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC
    Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.
    Ojha T; Pathak V; Shi Y; Hennink WE; Moonen CTW; Storm G; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2017 Sep; 119():44-60. PubMed ID: 28697952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomedicines Targeting the Tumor Microenvironment.
    Tong R; Langer R
    Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment.
    Zhang Y; Ho SH; Li B; Nie G; Li S
    Med Res Rev; 2020 May; 40(3):1084-1102. PubMed ID: 31709590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomedicine therapeutic approaches to overcome cancer drug resistance.
    Markman JL; Rekechenetskiy A; Holler E; Ljubimova JY
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1866-79. PubMed ID: 24120656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection.
    Natfji AA; Ravishankar D; Osborn HMI; Greco F
    J Pharm Sci; 2017 Nov; 106(11):3179-3187. PubMed ID: 28669714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomedicines for the treatment of hematological malignancies.
    Deshantri AK; Varela Moreira A; Ecker V; Mandhane SN; Schiffelers RM; Buchner M; Fens MHAM
    J Control Release; 2018 Oct; 287():194-215. PubMed ID: 30165140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead.
    Akhter MH; Beg S; Tarique M; Malik A; Afaq S; Choudhry H; Hosawi S
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129777. PubMed ID: 33130062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines.
    Qin SY; Zhang AQ; Zhang XZ
    Small; 2018 Nov; 14(45):e1802417. PubMed ID: 30247806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perspectives on the past, present, and future of cancer nanomedicine.
    Youn YS; Bae YH
    Adv Drug Deliv Rev; 2018 May; 130():3-11. PubMed ID: 29778902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link?
    Taurin S; Nehoff H; Greish K
    J Control Release; 2012 Dec; 164(3):265-75. PubMed ID: 22800576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.