These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 27871998)

  • 1. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV).
    Kan J; Chellamuthu P; Obraztsova A; Moore JE; Nealson KH
    J Appl Microbiol; 2011 Aug; 111(2):329-37. PubMed ID: 21599813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of diverse water pipe materials on bacterial communities and water quality in the annular reactor.
    Jang HJ; Choi YJ; Ka JO
    J Microbiol Biotechnol; 2011 Feb; 21(2):115-23. PubMed ID: 21364292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microfouling and corrosive bacterial community of a firewater distribution system.
    Palaniappan B; Toleti SR
    J Biosci Bioeng; 2016 Apr; 121(4):435-41. PubMed ID: 26467696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.
    López MA; Zavala-Díaz de la Serna FJ; Jan-Roblero J; Romero JM; Hernández-Rodríguez C
    FEMS Microbiol Ecol; 2006 Oct; 58(1):145-54. PubMed ID: 16958915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline.
    Jan-Roblero J; Romero JM; Amaya M; Le Borgne S
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):862-7. PubMed ID: 15107951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.
    Païssé S; Ghiglione JF; Marty F; Abbas B; Gueuné H; Amaya JM; Muyzer G; Quillet L
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7493-504. PubMed ID: 23086338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS.
    Unsal T; Cansever N; Ilhan-Sungur E
    World J Microbiol Biotechnol; 2019 Jan; 35(2):22. PubMed ID: 30656423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor.
    Marques JM; de Almeida FP; Lins U; Seldin L; Korenblum E
    World J Microbiol Biotechnol; 2012 Jun; 28(6):2355-63. PubMed ID: 22806109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marine prosthecate bacteria involved in the ennoblement of stainless steel.
    Baker PW; Ito K; Watanabe K
    Environ Microbiol; 2003 Oct; 5(10):925-32. PubMed ID: 14510846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.
    Rajasekar A; Anandkumar B; Maruthamuthu S; Ting YP; Rahman PK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1175-88. PubMed ID: 19844704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.