These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27872187)

  • 1. Galactomannan Catabolism Conferred by a Polysaccharide Utilization Locus of Bacteroides ovatus: ENZYME SYNERGY AND CRYSTAL STRUCTURE OF A β-MANNANASE.
    Bågenholm V; Reddy SK; Bouraoui H; Morrill J; Kulcinskaja E; Bahr CM; Aurelius O; Rogers T; Xiao Y; Logan DT; Martens EC; Koropatkin NM; Stålbrand H
    J Biol Chem; 2017 Jan; 292(1):229-243. PubMed ID: 27872187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A surface-exposed GH26 β-mannanase from
    Bågenholm V; Wiemann M; Reddy SK; Bhattacharya A; Rosengren A; Logan DT; Stålbrand H
    J Biol Chem; 2019 Jun; 294(23):9100-9117. PubMed ID: 31000630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans.
    Reddy SK; Bågenholm V; Pudlo NA; Bouraoui H; Koropatkin NM; Martens EC; Stålbrand H
    FEBS Lett; 2016 Jul; 590(14):2106-18. PubMed ID: 27288925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site.
    Cartmell A; Topakas E; Ducros VM; Suits MD; Davies GJ; Gilbert HJ
    J Biol Chem; 2008 Dec; 283(49):34403-13. PubMed ID: 18799462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backbone
    Wernersson S; Bågenholm V; Persson C; Upadhyay SK; Stålbrand H; Akke M
    Biomol NMR Assign; 2019 Apr; 13(1):213-218. PubMed ID: 30734154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine bacteroidetes use a conserved enzymatic cascade to digest diatom β-mannan.
    Beidler I; Robb CS; Vidal-Melgosa S; Zühlke MK; Bartosik D; Solanki V; Markert S; Becher D; Schweder T; Hehemann JH
    ISME J; 2023 Feb; 17(2):276-285. PubMed ID: 36411326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of exo-β-mannanase activity in the GH2 family.
    Domingues MN; Souza FHM; Vieira PS; de Morais MAB; Zanphorlin LM; Dos Santos CR; Pirolla RAS; Honorato RV; de Oliveira PSL; Gozzo FC; Murakami MT
    J Biol Chem; 2018 Aug; 293(35):13636-13649. PubMed ID: 29997257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates.
    Malgas S; van Dyk SJ; Pletschke BI
    Enzyme Microb Technol; 2015 Mar; 70():1-8. PubMed ID: 25659626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene.
    Novak JK; Gardner JG
    Mol Microbiol; 2023 Mar; 119(3):312-325. PubMed ID: 36604822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation.
    Song Y; Sun W; Fan Y; Xue Y; Liu D; Ma C; Liu W; Mosher W; Luo X; Li Z; Ma W; Zhang T
    J Agric Food Chem; 2018 Oct; 66(42):11055-11063. PubMed ID: 30351049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from
    You X; Qin Z; Yan Q; Yang S; Li Y; Jiang Z
    J Biol Chem; 2018 Jul; 293(30):11746-11757. PubMed ID: 29871927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Cloning, Expression and Biochemical Characterization of a Family 5 Glycoside Hydrolase First Endo-Mannanase (RfGH5_7) from Ruminococcus flavefaciens FD-1 v3.
    Goyal D; Kumar K; Centeno MSJ; Thakur A; Pires VMR; Bule P; Fontes CMGA; Goyal A
    Mol Biotechnol; 2019 Nov; 61(11):826-835. PubMed ID: 31435842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase.
    You X; Qin Z; Li YX; Yan QJ; Li B; Jiang ZQ
    Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1376-1388. PubMed ID: 29550433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Active Site Architecture and Reaction Product Linkage Chemistry Reveals a Conserved Cleavage Substrate for an Endo-alpha-mannanase within Diverse Yeast Mannans.
    Jones DR; Xing X; Tingley JP; Klassen L; King ML; Alexander TW; Abbott DW
    J Mol Biol; 2020 Feb; 432(4):1083-1097. PubMed ID: 31945375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A.
    Dias FM; Vincent F; Pell G; Prates JA; Centeno MS; Tailford LE; Ferreira LM; Fontes CM; Davies GJ; Gilbert HJ
    J Biol Chem; 2004 Jun; 279(24):25517-26. PubMed ID: 15014076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GH26 β-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: heterologous expression and characterization.
    Tsukagoshi H; Nakamura A; Ishida T; Otagiri M; Moriya S; Samejima M; Igarashi K; Kitamoto K; Arioka M
    Biochem Biophys Res Commun; 2014 Sep; 452(3):520-5. PubMed ID: 25173929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratus.
    Tsukagoshi H; Nakamura A; Ishida T; Touhara KK; Otagiri M; Moriya S; Samejima M; Igarashi K; Fushinobu S; Kitamoto K; Arioka M
    J Biol Chem; 2014 Apr; 289(15):10843-10852. PubMed ID: 24570006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trp residue at subsite - 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut.
    Hsu Y; Koizumi H; Otagiri M; Moriya S; Arioka M
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1737-1747. PubMed ID: 29305697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BdPUL12 depolymerizes β-mannan-like glycans into mannooligosaccharides and mannose, which serve as carbon sources for Bacteroides dorei and gut probiotics.
    Gao G; Cao J; Mi L; Feng D; Deng Q; Sun X; Zhang H; Wang Q; Wang J
    Int J Biol Macromol; 2021 Sep; 187():664-674. PubMed ID: 34339781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.