BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27872412)

  • 1. Estimation of Viscoelastic Properties of Cells Using Acoustic Tweezing Cytometry.
    Yang C; Chen D; Hong X
    J Ultrasound Med; 2016 Dec; 35(12):2537-2542. PubMed ID: 27872412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells.
    Chen D; Sun Y; Gudur MS; Hsiao YS; Wu Z; Fu J; Deng CX
    Biophys J; 2015 Jan; 108(1):32-42. PubMed ID: 25564850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid responses of human pluripotent stem cells to cyclic mechanical strains applied to integrin by acoustic tweezing cytometry.
    Xu Z; Liu S; Xue X; Li W; Fu J; Deng CX
    Sci Rep; 2023 Oct; 13(1):18030. PubMed ID: 37865697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical microbubble dynamics in a viscoelastic medium at capillary breaching thresholds.
    Patterson B; Miller DL; Johnsen E
    J Acoust Soc Am; 2012 Dec; 132(6):3770-7. PubMed ID: 23231107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law.
    Tsiglifis K; Pelekasis NA
    J Acoust Soc Am; 2008 Jun; 123(6):4059-70. PubMed ID: 18537358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility.
    Fan Z; Sun Y; Di Chen ; Tay D; Chen W; Deng CX; Fu J
    Sci Rep; 2013; 3():2176. PubMed ID: 23846290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Actuation of Integrin-Bound Microbubbles for Mechanical Phenotyping during Differentiation and Morphogenesis of Human Embryonic Stem Cells.
    Fan Z; Xue X; Perera R; Nasr Esfahani S; Exner AA; Fu J; Deng CX
    Small; 2018 Dec; 14(50):e1803137. PubMed ID: 30427572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry.
    Chen D; Sun Y; Deng CX; Fu J
    Biophys J; 2015 Mar; 108(6):1315-1317. PubMed ID: 25809245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-Dependent Viscoelasticity of Poloxamer-Shelled Microbubbles.
    Tabata H; Koyama D; Matsukawa M; Krafft MP; Yoshida K
    Langmuir; 2023 Jan; 39(1):433-441. PubMed ID: 36580034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characterization of ultrasonically synthesized microbubble shells by flow cytometry and AFM.
    Cavalieri F; Best JP; Perez C; Tu J; Caruso F; Matula TJ; Ashokkumar M
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10920-5. PubMed ID: 24125167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic tweezing cytometry for mechanical phenotyping of macrophages and mechanopharmaceutical cytotripsy.
    Hong X; Rzeczycki PM; Keswani RK; Murashov MD; Fan Z; Deng CX; Rosania GR
    Sci Rep; 2019 Apr; 9(1):5702. PubMed ID: 30952950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional viscoelastic model for cell deformation with experimental verification.
    Karcher H; Lammerding J; Huang H; Lee RT; Kamm RD; Kaazempur-Mofrad MR
    Biophys J; 2003 Nov; 85(5):3336-49. PubMed ID: 14581235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic-Glycoengineering-Enabled Molecularly Specific Acoustic Tweezing Cytometry for Targeted Mechanical Stimulation of Cell Surface Sialoglycans.
    Li W; Guo J; Hobson EC; Xue X; Li Q; Fu J; Deng CX; Guo Z
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401921. PubMed ID: 38498603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for acoustic vaporization of encapsulated droplets.
    Guédra M; Coulouvrat F
    J Acoust Soc Am; 2015 Dec; 138(6):3656-67. PubMed ID: 26723321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal design and experimental investigation of surfactant encapsulated microbubbles.
    Zong Y; Wan M; Wang S; Zhang G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e119-22. PubMed ID: 16859725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.