These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27873104)

  • 1. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.
    Shiba K; Zulkifli NEB; Ishioka Y
    J Artif Organs; 2017 Jun; 20(2):103-109. PubMed ID: 27873104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of current density and specific absorption rate in biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5392-5. PubMed ID: 17945897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of specific absorption rate and current density in biological tissues surrounding energy transmission transformer for an artificial heart: using magnetic resonance imaging-based human body model.
    Higaki N; Shiba K
    Artif Organs; 2010 Jan; 34(1):E1-9. PubMed ID: 20420594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):205-13. PubMed ID: 18232363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system.
    Zan P; Yang BH; Shao Y; Yan GZ; Liu H
    J Zhejiang Univ Sci B; 2010 Dec; 11(12):931-6. PubMed ID: 21121071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.
    Shiba K; Nagato T; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1864-71. PubMed ID: 18595805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of specific absorption rate and current density in an energy transmission system for a wireless capsule endoscope.
    Shiba K; Nagato T; Tsuji T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6052-5. PubMed ID: 18003394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models.
    Gao YM; Zhang HF; Lin S; Jiang RX; Chen ZY; Lučev Vasić Ž; Vai MI; Du M; Cifrek M; Pun SH
    Biomed Eng Online; 2018 Jun; 17(1):71. PubMed ID: 29866126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in EMF permittivity values: implications for SAR calculations.
    Hurt WD; Ziriax JM; Mason PA
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):396-401. PubMed ID: 10743782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and assessment of novel artificial anal sphincter with adaptive transcutaneous energy transfer system.
    Ke L; Yan G; Wang Z; Yan S; Liu Z
    J Med Eng Technol; 2015 Feb; 39(2):159-67. PubMed ID: 25626127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.
    Gong F; Wei Z; Cong Y; Chi H; Yin B; Sun M
    Technol Health Care; 2017 Jul; 25(S1):387-397. PubMed ID: 28582927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerically simulated exposure of children and adults to pulsed gradient fields in MRI.
    Samoudi AM; Vermeeren G; Tanghe E; Van Holen R; Martens L; Josephs W
    J Magn Reson Imaging; 2016 Nov; 44(5):1360-1367. PubMed ID: 27043243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.
    Kumar V; Vats RP; Pathak PP
    Indian J Biochem Biophys; 2008 Aug; 45(4):269-74. PubMed ID: 18788478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of a wireless power transmission system for an active capsule endoscope.
    Xin W; Yan G; Wang W
    Int J Med Robot; 2010 Mar; 6(1):113-22. PubMed ID: 20112281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic fields of surface coil in vivo NMR at high frequencies.
    Keltner JR; Carlson JW; Roos MS; Wong ST; Wong TL; Budinger TF
    Magn Reson Med; 1991 Dec; 22(2):467-80. PubMed ID: 1812380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2009 Apr; 54(8):2437-47. PubMed ID: 19336844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inductively coupled transmission of neuro-active signals: analysis of optimal parameters.
    Tulgar M; Soysal OM
    Med Phys; 2003 Jan; 30(1):79-87. PubMed ID: 12557982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.
    Qureshi MRA; Alfadhl Y; Chen X; Peyman A; Maslanyj M; Mann S
    Bioelectromagnetics; 2018 Apr; 39(3):200-216. PubMed ID: 29143352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of safety distance limits for a human near a cellular base station antenna, adopting the IEEE standard or ICNIRP guidelines.
    Cooper J; Marx B; Buhl J; Hombach V
    Bioelectromagnetics; 2002 Sep; 23(6):429-43. PubMed ID: 12210561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.