BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27873277)

  • 21. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.
    Sokol M; Jessen KM; Pedersen FS
    APMIS; 2016; 124(1-2):127-39. PubMed ID: 26818267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin Immunoprecipitation for Analyzing Transcription Factor Binding and Histone Modifications in Drosophila.
    Ghavi-Helm Y; Zhao B; Furlong EE
    Methods Mol Biol; 2016; 1478():263-277. PubMed ID: 27730588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.
    Koganti S; Clark C; Zhi J; Li X; Chen EI; Chakrabortty S; Hill ER; Bhaduri-McIntosh S
    J Virol; 2015 May; 89(9):5002-11. PubMed ID: 25717101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Next-generation sequencing applied to flower development: ChIP-Seq.
    Graciet E; O'Maoiléidigh DS; Wellmer F
    Methods Mol Biol; 2014; 1110():413-29. PubMed ID: 24395273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication.
    Wang P; Day L; Dheekollu J; Lieberman PM
    J Virol; 2005 Nov; 79(21):13298-309. PubMed ID: 16227252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation.
    Germi R; Guigue N; Lupo J; Semenova T; Grossi L; Vermeulen O; Epaulard O; de Fraipont F; Morand P
    J Med Virol; 2016 Oct; 88(10):1814-20. PubMed ID: 26990870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epstein-Barr Virus BZLF1-Mediated Downregulation of Proinflammatory Factors Is Essential for Optimal Lytic Viral Replication.
    Li Y; Long X; Huang L; Yang M; Yuan Y; Wang Y; Delecluse HJ; Kuang E
    J Virol; 2016 Jan; 90(2):887-903. PubMed ID: 26537683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping protein-DNA interactions using ChIP-sequencing.
    Massie CE; Mills IG
    Methods Mol Biol; 2012; 809():157-73. PubMed ID: 22113275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
    Soyer JL; Möller M; Schotanus K; Connolly LR; Galazka JM; Freitag M; Stukenbrock EH
    Fungal Genet Biol; 2015 Jun; 79():63-70. PubMed ID: 25857259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Viral Epigenotypes Using Chromatin Immunoprecipitation.
    Bánáti F; Szenthe K
    Methods Mol Biol; 2017; 1532():215-227. PubMed ID: 27873279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic analysis: ChIP-chip and ChIP-seq.
    Pellegrini M; Ferrari R
    Methods Mol Biol; 2012; 802():377-87. PubMed ID: 22130894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells.
    Xing Y; Yang Y; Zhou F; Wang J
    Gene; 2013 Sep; 526(2):142-9. PubMed ID: 23688556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transactivators Zta and Rta of Epstein-Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle.
    Guo Q; Qian L; Guo L; Shi M; Chen C; Lv X; Yu M; Hu M; Jiang G; Guo N
    Mol Immunol; 2010 May; 47(9):1783-92. PubMed ID: 20338640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.
    Deng Z; Chen CJ; Zerby D; Delecluse HJ; Lieberman PM
    J Virol; 2001 Nov; 75(21):10334-47. PubMed ID: 11581402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of global methylation using a Zta-expressing nasopharyngeal carcinoma cell line.
    Chen YF; Tung CL; Chang Y; Hsiao WC; Su LJ; Sun HS
    Genomics; 2011 Apr; 97(4):205-13. PubMed ID: 21195163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin profiling of Epstein-Barr virus latency control region.
    Day L; Chau CM; Nebozhyn M; Rennekamp AJ; Showe M; Lieberman PM
    J Virol; 2007 Jun; 81(12):6389-401. PubMed ID: 17409162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epstein-Barr virus nuclear antigen 3A partially coincides with EBNA3C genome-wide and is tethered to DNA through BATF complexes.
    Schmidt SC; Jiang S; Zhou H; Willox B; Holthaus AM; Kharchenko PV; Johannsen EC; Kieff E; Zhao B
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):554-9. PubMed ID: 25540416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.