These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27873343)

  • 1. A time-varying effect model for examining group differences in trajectories of zero-inflated count outcomes with applications in substance abuse research.
    Yang S; Cranford JA; Jester JM; Li R; Zucker RA; Buu A
    Stat Med; 2017 Feb; 36(5):827-837. PubMed ID: 27873343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A time-varying effect model for studying gender differences in health behavior.
    Yang S; Cranford JA; Li R; Zucker RA; Buu A
    Stat Methods Med Res; 2017 Dec; 26(6):2812-2820. PubMed ID: 26475829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical models for longitudinal zero-inflated count data with applications to the substance abuse field.
    Buu A; Li R; Tan X; Zucker RA
    Stat Med; 2012 Dec; 31(29):4074-86. PubMed ID: 22826194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation study of the performance of statistical models for count outcomes with excessive zeros.
    Zhou Z; Li D; Huh D; Xie M; Mun EY
    Stat Med; 2024 Oct; 43(24):4752-4767. PubMed ID: 39193779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On statistical tests for homogeneity of two bivariate zero-inflated Poisson populations.
    Yuen HK; Chow SC; Tse SK
    J Biopharm Stat; 2015; 25(1):44-53. PubMed ID: 24837140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New variable selection methods for zero-inflated count data with applications to the substance abuse field.
    Buu A; Johnson NJ; Li R; Tan X
    Stat Med; 2011 Aug; 30(18):2326-40. PubMed ID: 21563207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage model for time varying effects of zero-inflated count longitudinal covariates with applications in health behaviour research.
    Yang H; Li R; Zucker RA; Buu A
    J R Stat Soc Ser C Appl Stat; 2016 Apr; 65(3):431-444. PubMed ID: 27041773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation analysis with zero-inflated substance use outcomes: Challenges and recommendations.
    O'Rourke HP; Vazquez E
    Addict Behav; 2019 Jul; 94():16-25. PubMed ID: 30824126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-inflated count models for longitudinal measurements with heterogeneous random effects.
    Zhu H; Luo S; DeSantis SM
    Stat Methods Med Res; 2017 Aug; 26(4):1774-1786. PubMed ID: 26113383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A test of inflated zeros for Poisson regression models.
    He H; Zhang H; Ye P; Tang W
    Stat Methods Med Res; 2019 Apr; 28(4):1157-1169. PubMed ID: 29284370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation for zero-inflated over-dispersed count data model with missing response.
    Mian R; Paul S
    Stat Med; 2016 Dec; 35(30):5603-5624. PubMed ID: 27582395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
    Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM
    Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Work-related risk factors and employee substance use: insights from a sample of Israeli blue-collar workers.
    Biron M; Bamberger PA; Noyman T
    J Occup Health Psychol; 2011 Apr; 16(2):247-263. PubMed ID: 21463051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable selection for distribution-free models for longitudinal zero-inflated count responses.
    Chen T; Wu P; Tang W; Zhang H; Feng C; Kowalski J; Tu XM
    Stat Med; 2016 Jul; 35(16):2770-85. PubMed ID: 26844819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized partially linear single-index model for zero-inflated count data.
    Wang X; Zhang J; Yu L; Yin G
    Stat Med; 2015 Feb; 34(5):876-86. PubMed ID: 25421596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data.
    Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD
    J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cautionary note regarding count models of alcohol consumption in randomized controlled trials.
    Horton NJ; Kim E; Saitz R
    BMC Med Res Methodol; 2007 Feb; 7():9. PubMed ID: 17302984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Source Detection and Analysis Using a Zero-inflated Count Rate Model.
    Klumpp J; Brandl A
    Health Phys; 2015 Jul; 109(1):35-53. PubMed ID: 26011497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of the zero-inflated Poisson and zero-inflated negative binomial models: a case study of cross-sectional and longitudinal DMF data examining the effect of socio-economic status.
    Lewsey JD; Thomson WM
    Community Dent Oral Epidemiol; 2004 Jun; 32(3):183-9. PubMed ID: 15151688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models for zero-inflated, correlated count data with extra heterogeneity: when is it too complex?
    Chebon S; Faes C; Cools F; Geys H
    Stat Med; 2017 Jan; 36(2):345-361. PubMed ID: 27734514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.