BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 27873506)

  • 41. A hydraulically driven colonoscope.
    Coleman SA; Tapia-Siles SC; Pakleppa M; Vorstius JB; Keatch RP; Tang B; Cuschieri A
    Surg Endosc; 2016 Oct; 30(10):4515-24. PubMed ID: 27450210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Full-driving soft robotic colonoscope in compliant colon tissue.
    Wang K; Ma J; Wang F; Wang Z; Yan G; Zhou Y
    J Med Eng Technol; 2017 Nov; 41(8):662-669. PubMed ID: 29117761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Haptic interface of the KAIST-Ewha colonoscopy simulator II.
    Woo HS; Kim WS; Ahn W; Lee DY; Yi SY
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):746-53. PubMed ID: 19000954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancement of a master-slave robotic system for natural orifice transluminal endoscopic surgery.
    Sun Z; Ang RY; Lim EW; Wang Z; Ho KY; Phee SJ
    Ann Acad Med Singap; 2011 May; 40(5):223-30. PubMed ID: 21678013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of automated target centralization in colonoscopy.
    van der Stap N; Rozeboom ED; Pullens HJ; van der Heijden F; Broeders IA
    Int J Comput Assist Radiol Surg; 2016 Mar; 11(3):457-65. PubMed ID: 26450108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A micro creeping robot for colonoscopy based on the earthworm.
    Zuo J; Yan G; Gao Z
    J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emerging next-generation robotic colonoscopy systems towards painless colonoscopy.
    Yeung CK; Cheung JL; Sreedhar B
    J Dig Dis; 2019 Apr; 20(4):196-205. PubMed ID: 30834714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES).
    Phee SJ; Low SC; Huynh VA; Kencana AP; Sun ZL; Yang K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1192-5. PubMed ID: 19963992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application research of master-slave cranio-maxillofacial surgical robot based on force feedback.
    Xu C; Wang Y; Zhou C; Zhang Z; Xie L; Andersson K; Feng L
    Proc Inst Mech Eng H; 2021 May; 235(5):583-596. PubMed ID: 33645309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Control of a New Asymmetric Teleoperation Robot Based on a State Observer.
    Shi B; Wu H; Zhu Y; Shang M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Robotic-assisted flexible colonoscopy: preliminary safety and efficiency in humans.
    Rozeboom ED; Bastiaansen BA; de Vries ES; Dekker E; Fockens PA; Broeders IA
    Gastrointest Endosc; 2016 Jun; 83(6):1267-71. PubMed ID: 26551732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a remote-control system for catheterization capable of high-speed force feedback.
    Takagi R; Osada K; Hanafusa A; Takagi M; Mohamaddan SB; Mitsui K; Anzai H
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):763-773. PubMed ID: 36689147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimation of environmental force for the haptic interface of robotic surgery.
    Son HI; Bhattacharjee T; Lee DY
    Int J Med Robot; 2010 Jun; 6(2):221-30. PubMed ID: 20506442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Field experiment of a telesurgery system using a surgical robot with haptic feedback.
    Ota M; Oki E; Nakanoko T; Tanaka Y; Toyota S; Hu Q; Nakaji Y; Nakanishi R; Ando K; Kimura Y; Hisamatsu Y; Mimori K; Takahashi Y; Morohashi H; Kanno T; Tadano K; Kawashima K; Takano H; Ebihara Y; Shiota M; Inokuchi J; Eto M; Yoshizumi T; Hakamada K; Hirano S; Mori M
    Surg Today; 2024 Apr; 54(4):375-381. PubMed ID: 37653350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advances in colonic imaging: technical improvements in colonoscopy.
    Brown GJ; Saunders BP
    Eur J Gastroenterol Hepatol; 2005 Aug; 17(8):785-92. PubMed ID: 16003125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responsive insertion technology.
    Saito Y; Kimura H
    Dig Endosc; 2011 May; 23 Suppl 1():164-7. PubMed ID: 21535226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional evaluation of the endotics system, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial.
    Cosentino F; Tumino E; Passoni GR; Morandi E; Capria A
    Int J Artif Organs; 2009 Aug; 32(8):517-27. PubMed ID: 19844894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.