These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27873553)

  • 1. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
    Lu Z; Chen X; Zhang X; Tong KY; Zhou P
    Int J Neural Syst; 2017 Aug; 27(5):1750009. PubMed ID: 27873553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Offline and online myoelectric pattern recognition analysis and real-time control of a robotic hand after spinal cord injury.
    Lu Z; Stampas A; Francisco GE; Zhou P
    J Neural Eng; 2019 Jun; 16(3):036018. PubMed ID: 30836346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient.
    Lu Z; Tong KY; Shin H; Li S; Zhou P
    Front Neurol; 2017; 8():107. PubMed ID: 28373860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke.
    Lu Z; Tong KY; Zhang X; Li S; Zhou P
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):365-372. PubMed ID: 29993410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton.
    McDonald CG; Dennis TA; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():164-169. PubMed ID: 28813812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury.
    Liu J; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):96-103. PubMed ID: 23033334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.
    Liu J; Li X; Li G; Zhou P
    Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic Hand-Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report.
    Lu Z; Tong KY; Shin H; Stampas A; Zhou P
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S146-S149. PubMed ID: 28704209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density myoelectric pattern recognition toward improved stroke rehabilitation.
    Zhang X; Zhou P
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1649-57. PubMed ID: 22453603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury.
    McDonald CG; Sullivan JL; Dennis TA; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):978-987. PubMed ID: 32167899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and testing of an under-actuated surface EMG-driven hand exoskeleton.
    Lince A; Celadon N; Battezzato A; Favetto A; Appendino S; Ariano P; Paleari M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():670-675. PubMed ID: 28813897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury.
    Jordanic M; Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2016 Apr; 13(1):41. PubMed ID: 27129309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An upper-limb power-assist exoskeleton using proportional myoelectric control.
    Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z
    Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature dimensionality reduction for myoelectric pattern recognition: a comparison study of feature selection and feature projection methods.
    Liu J
    Med Eng Phys; 2014 Dec; 36(12):1716-20. PubMed ID: 25292451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.