BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27873843)

  • 1. A Voltammetric Biosensor Based on Glassy Carbon Electrodes Modified with Single-Walled Carbon Nanotubes/Hemoglobin for Detection of Acrylamide in Water Extracts from Potato Crisps.
    Krajewska A; Radecki J; Radecka H
    Sensors (Basel); 2008 Sep; 8(9):5832-5844. PubMed ID: 27873843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel voltammetric biosensor for determining acrylamide in food samples.
    Stobiecka A; Radecka H; Radecki J
    Biosens Bioelectron; 2007 Apr; 22(9-10):2165-70. PubMed ID: 17097868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemical biosensor based on hemoglobin-oligonucleotides-modified electrode for detection of acrylamide in potato fries.
    Asnaashari M; Kenari RE; Farahmandfar R; Abnous K; Taghdisi SM
    Food Chem; 2019 Jan; 271():54-61. PubMed ID: 30236713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film.
    Batra B; Lata S; Pundir CS
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1591-9. PubMed ID: 23494399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries.
    Zhang Y; Chen J; Zhang X; Wu X; Zhang Y
    J Agric Food Chem; 2007 Jan; 55(2):523-8. PubMed ID: 17227088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective ways of decreasing acrylamide content in potato crisps during processing.
    Kita A; Bråthen E; Knutsen SH; Wicklund T
    J Agric Food Chem; 2004 Nov; 52(23):7011-6. PubMed ID: 15537311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode.
    Li Y; Du J; Yang J; Liu D; Lu X
    Colloids Surf B Biointerfaces; 2012 Sep; 97():32-6. PubMed ID: 22580482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of acrylamide content in potato products using GC-MS/MS and LC-MS/MS methods].
    Mojska H; Gielecińska I; Małecka K
    Rocz Panstw Zakl Hig; 2010; 61(3):237-42. PubMed ID: 21365857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltammetric oxidation and determination of cinnarizine at glassy carbon electrode modified with multi-walled carbon nanotubes.
    Hegde RN; Hosamani RR; Nandibewoor ST
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):259-65. PubMed ID: 19446444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of glycine reduces the content of acrylamide in cereal and potato products.
    Bråthen E; Kita A; Knutsen SH; Wicklund T
    J Agric Food Chem; 2005 Apr; 53(8):3259-64. PubMed ID: 15826086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acrylamide levels in potato crisps and other snacks and exposure risk assessment through a Margin of Exposure approach.
    Esposito F; Nardone A; Fasano E; Triassi M; Cirillo T
    Food Chem Toxicol; 2017 Oct; 108(Pt A):249-256. PubMed ID: 28811114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of acrylamide level in popular Iranian brands of potato and corn products.
    Boroushaki MT; Nikkhah E; Kazemi A; Oskooei M; Raters M
    Food Chem Toxicol; 2010 Oct; 48(10):2581-4. PubMed ID: 20600544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary exposure to acrylamide from potato crisps to the Spanish population.
    Arribas-Lorenzo G; Morales FJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):289-97. PubMed ID: 19680901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide in fried and roasted potato products: a review on progress in mitigation.
    Foot RJ; Haase NU; Grob K; Gondé P
    Food Addit Contam; 2007; 24 Suppl 1():37-46. PubMed ID: 17687698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of acrylamide in food by solid-phase microextraction coupled to gas chromatography-positive chemical ionization tandem mass spectrometry.
    Lee MR; Chang LY; Dou J
    Anal Chim Acta; 2007 Jan; 582(1):19-23. PubMed ID: 17386469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the use of empirical models to predict the formation of acrylamide in potato crisps.
    Knol JJ; Viklund GA; Linssen JP; Sjöholm IM; Skog KI; van Boekel MA
    Mol Nutr Food Res; 2008 Mar; 52(3):313-21. PubMed ID: 18320572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode.
    Zeng Y; Yu D; Yu Y; Zhou T; Shi G
    J Hazard Mater; 2012 May; 217-218():315-22. PubMed ID: 22494904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of acrylamide traces in some commonly consumed heat-treated carbohydrate-rich foods by GC-MS/MS in Bangladesh.
    Hasan GMMA; Das AK; Satter MA
    Heliyon; 2022 Oct; 8(10):e11092. PubMed ID: 36276720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.
    Benvidi A; Tezerjani MD; Jahanbani S; Mazloum Ardakani M; Moshtaghioun SM
    Talanta; 2016 Jan; 147():621-7. PubMed ID: 26592654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive detection of silybin based on adsorptive stripping analysis at single-sided heated screen-printed carbon electrodes modified with multi-walled carbon nanotubes with direct current heating.
    Wu SH; Nie FH; Chen QZ; Sun JJ
    Anal Chim Acta; 2011 Feb; 687(1):43-9. PubMed ID: 21241844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.