These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27873854)

  • 1. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.
    Sen A; Gümüsay MU; Kavas A; Bulucu U
    Sensors (Basel); 2008 Sep; 8(9):5996-6014. PubMed ID: 27873854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voronoi Diagram and Crowdsourcing-Based Radio Map Interpolation for GRNN Fingerprinting Localization Using WLAN.
    Sun Y; He Y; Meng W; Zhang X
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial electromagnetic field intensity modelling of global system for mobile communication base stations in the Istanbul Technical University Ayazaga campus area.
    Boz K; Denli HH
    Geospat Health; 2018 May; 13(1):527. PubMed ID: 29772874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and comparison of three spatial interpolation methods for electromagnetic levels in the AM band within an urban area.
    Rufo M; Antolín A; Paniagua JM; Jiménez A
    Environ Res; 2018 Apr; 162():219-225. PubMed ID: 29407756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space partitioning strategies for indoor WLAN positioning with cascade-connected ANN structures.
    Borenović M; Nešković A; Budimir D
    Int J Neural Syst; 2011 Feb; 21(1):1-15. PubMed ID: 21243727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimization of measuring points for the electric field exposure map generation in indoor environments by means of Kriging interpolation and selective sampling.
    Martínez-González A; Monzó-Cabrera J; Martínez-Sáez AJ; Lozano-Guerrero AJ
    Environ Res; 2022 Sep; 212(Pt D):113577. PubMed ID: 35636463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System.
    Jan SS; Yeh SJ; Liu YW
    Sensors (Basel); 2015 Aug; 15(9):21377-93. PubMed ID: 26343673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procedure for assessment of general public exposure from WLAN in offices and in wireless sensor network testbed.
    Verloock L; Joseph W; Vermeeren G; Martens L
    Health Phys; 2010 Apr; 98(4):628-38. PubMed ID: 20220371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece.
    Vermeeren G; Markakis I; Goeminne F; Samaras T; Martens L; Joseph W
    Prog Biophys Mol Biol; 2013 Nov; 113(2):254-63. PubMed ID: 23872299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete Indoor Three-Dimensional Localization System Based on Neural Networks Using Visible Light Communication.
    Alonso-González I; Sánchez-Rodríguez D; Ley-Bosch C; Quintana-Suárez MA
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29601525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path loss dataset for modeling radio wave propagation in smart campus environment.
    Popoola SI; Atayero AA; Arausi OD; Matthews VO
    Data Brief; 2018 Apr; 17():1062-1073. PubMed ID: 29876462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid stochastic approach for self-location of wireless sensors in indoor environments.
    Lloret J; Tomas J; Garcia M; Canovas A
    Sensors (Basel); 2009; 9(5):3695-712. PubMed ID: 22412334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the duty cycle of WLAN for realistic radio frequency electromagnetic field exposure assessment.
    Joseph W; Pareit D; Vermeeren G; Naudts D; Verloock L; Martens L; Moerman I
    Prog Biophys Mol Biol; 2013 Jan; 111(1):30-6. PubMed ID: 23085070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Evaluation and Interference Characterization of Wireless Sensor Networks for Complex High-Node Density Scenarios.
    Celaya-Echarri M; Azpilicueta L; López-Iturri P; Aguirre E; Falcone F
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel 3D ray launching technique for radio propagation prediction in indoor environments.
    Geok TK; Hossain F; Chiat ATW
    PLoS One; 2018; 13(8):e0201905. PubMed ID: 30086170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure caused by wireless technologies used for short-range indoor communication in homes and offices.
    Schmid G; Lager D; Preiner P; Uberbacher R; Cecil S
    Radiat Prot Dosimetry; 2007; 124(1):58-62. PubMed ID: 17566000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crowdsourcing-Assisted Radio Environment Database for V2V Communication.
    Katagiri K; Sato K; Fujii T
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29649174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Vertical Handover Method to Optimize Utilization of Wireless Local Area Network in High-Speed Environment.
    Yew HT; Supriyanto E; Satria MH; Hau YW
    PLoS One; 2016; 11(11):e0165888. PubMed ID: 27814388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure levels due to WLAN devices in indoor environments corrected by a time-amplitude factor of distribution of the quasi-stochastic signals.
    Miclaus S; Bechet P; Stratakis D
    Radiat Prot Dosimetry; 2014 Dec; 162(4):536-43. PubMed ID: 24591729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach.
    Nedelcu AV; Machedon-Pisu M; Duguleana M; Talaba D
    ScientificWorldJournal; 2015; 2015():701848. PubMed ID: 26167533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.