These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27873894)

  • 21. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.
    Singh S; Lo MC; Damodaran VB; Kaplan HM; Kohn J; Zahn JD; Shreiber DI
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft High-Resolution Neural Interfacing Probes: Materials and Design Approaches.
    Lee M; Shim HJ; Choi C; Kim DH
    Nano Lett; 2019 May; 19(5):2741-2749. PubMed ID: 31002760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.
    Xie C; Liu J; Fu TM; Dai X; Zhou W; Lieber CM
    Nat Mater; 2015 Dec; 14(12):1286-92. PubMed ID: 26436341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-high-density in-vivo neural probes.
    Yazicioglu F; Lopez CM; Mitra S; Raducanu B; Musa S; Kloosterman F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2032-5. PubMed ID: 25570383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.
    Castagnola V; Descamps E; Lecestre A; Dahan L; Remaud J; Nowak LG; Bergaud C
    Biosens Bioelectron; 2015 May; 67():450-7. PubMed ID: 25256782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.
    Luo J; Xue N; Chen J
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
    Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next-Generation Bioelectric Medicine: Harnessing the Therapeutic Potential of Neural Implants.
    Lee SK; Jeakins GS; Tukiainen A; Hewage E; Armitage OE
    Bioelectricity; 2020 Dec; 2(4):321-327. PubMed ID: 34476364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A flexible depth probe using liquid crystal polymer.
    Lee SE; Jun SB; Lee HJ; Kim J; Lee SW; Im C; Shin HC; Chang JW; Kim SJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2085-94. PubMed ID: 22718688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The History and Horizons of Microscale Neural Interfaces.
    Kozai TDY
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.
    Szostak KM; Grand L; Constandinou TG
    Front Neurosci; 2017; 11():665. PubMed ID: 29270103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.
    Nurmikko AV; Donoghue JP; Hochberg LR; Patterson WR; Song YK; Bull CW; Borton DA; Laiwalla F; Park S; Ming Y; Aceros J
    Proc IEEE Inst Electr Electron Eng; 2010; 98(3):375-388. PubMed ID: 21654935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording.
    Scholvin J; Kinney JP; Bernstein JG; Moore-Kochlacs C; Kopell N; Fonstad CG; Boyden ES
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):120-130. PubMed ID: 26699649
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.