These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27873903)

  • 1. Effect of External Vibration on PZT Impedance Signature.
    Yang Y; Miao A
    Sensors (Basel); 2008 Nov; 8(11):6846-6859. PubMed ID: 27873903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.
    Yang Y; Hu Y; Lu Y
    Sensors (Basel); 2008 Jan; 8(1):327-346. PubMed ID: 27879711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Damage Detection through EMI and Wave Propagation Techniques Using Embedded PZT Smart Sensing Units.
    Gayakwad H; Thiyagarajan JS
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.
    Wang Z; Chen D; Zheng L; Huo L; Song G
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29865190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-frequency interval approach in electromechanical impedance technique for concrete structure health monitoring.
    Yang Y; Divsholi BS
    Sensors (Basel); 2010; 10(12):11644-61. PubMed ID: 22163548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Approach for Autonomous Compression Damage Identification in Fiber-Reinforced Concrete Using Piezoelectric Lead Zirconate Titanate Transducers.
    Sapidis GM; Kansizoglou I; Naoum MC; Papadopoulos NA; Chalioris CE
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.
    Yang Y; Divsholi BS; Soh CK
    Sensors (Basel); 2010; 10(5):5193-208. PubMed ID: 22399929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PZT-Based Electromechanical Impedance Method for Monitoring the Soil Freeze⁻Thaw Process.
    Zhang J; Zhang C; Xiao J; Jiang J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network.
    de Oliveira MA; Monteiro AV; Vieira Filho J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proof of concept study on reliability assessment of different metal foil length based piezoelectric sensor for electromechanical impedance techniques.
    Parida L; Moharana S; Vicente R; Ascensão G
    Sci Rep; 2024 Jan; 14(1):699. PubMed ID: 38184698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dressing Tool Condition Monitoring through Impedance-Based Sensors: Part 1-PZT Diaphragm Transducer Response and EMI Sensing Technique.
    Junior P; D'Addona DM; Aguiar PR
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures.
    Na WS; Baek J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexural Damage Diagnosis in Reinforced Concrete Beams Using a Wireless Admittance Monitoring System-Tests and Finite Element Analysis.
    Chalioris CE; Kytinou VK; Voutetaki ME; Karayannis CG
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature Effects on Electromechanical Response of Deposited Piezoelectric Sensors Used in Structural Health Monitoring of Aerospace Structures.
    Hoshyarmanesh H; Ghodsi M; Kim M; Cho HH; Park HH
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Integrity Assessment of Composites Plates with Embedded PZT Transducers for Structural Health Monitoring.
    Feng T; Aliabadi MHF
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Damage Indicator Based on the Electromechanical Impedance Principle for Structural Damage Identification.
    Zhou P; Wang D; Zhu H
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.
    Baptista FG; Budoya DE; de Almeida VA; Ulson JA
    Sensors (Basel); 2014 Jan; 14(1):1208-27. PubMed ID: 24434878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transducer loading effect on the performance of PZT-based SHM systems.
    Baptista FG; Filho JV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):933-41. PubMed ID: 20378455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Wireless System for Structural Health Monitoring Applications.
    Perera R; Pérez A; García-Diéguez M; Zapico-Valle JL
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT-CNT Sensor.
    Tareen N; Kim J; Kim WK; Park S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.