These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27873967)

  • 1. A Love Wave Reflective Delay Line with Polymer Guiding Layer for Wireless Sensor Application.
    Wang W; He S
    Sensors (Basel); 2008 Dec; 8(12):7917-7929. PubMed ID: 27873967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection.
    Xu FQ; Wang W; Xue XF; Hu HL; Liu XL; Pan Y
    Sensors (Basel); 2015 Dec; 15(12):30187-98. PubMed ID: 26633419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless and simultaneous detections of multiple bio-molecules in a single sensor using Love wave biosensor.
    Oh H; Fu C; Kim K; Lee K
    Sensors (Basel); 2014 Nov; 14(11):21660-75. PubMed ID: 25407905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.
    Li S; Wan Y; Fan C; Su Y
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Fabrication of ZnO Waveguide Layer for Love Wave Humidity Sensor Based on Magnetron Sputtering.
    Wen C; Niu T; Ma Y; Gao N; Ru F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum measurement range and accuracy of SAW reflective delay line sensors.
    Zheng Z; Han T; Qin P
    Sensors (Basel); 2015 Oct; 15(10):26643-53. PubMed ID: 26492251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-8 Guiding Layer for Love Wave Devices.
    Roach P; Atherton S; Doy N; McHale G; Newton MI
    Sensors (Basel); 2007 Nov; 7(11):2539-2547. PubMed ID: 28903244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of Love wave acoustic biosensors monitoring the adhesion process of tendon stem cells (TSCs).
    Wu H; Zu H; Wang JH; Wang QM
    Eur Biophys J; 2019 Apr; 48(3):249-260. PubMed ID: 30783690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of surface acoustic wave-based rate sensors.
    Xu F; Wang W; Shao X; Liu X; Liang Y
    Sensors (Basel); 2015 Oct; 15(10):25761-73. PubMed ID: 26473865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Love Wave Sensor with High Penetration Depth for Potential Application in Cell Monitoring.
    Segura Chávez PA; Bonhomme J; Bellaredj MLF; Olive L; Beyssen D; Oudich M; Charette PG; Sarry F
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constrained thickness-shear vibration-based piezoelectric transducers for generating unidirectional-propagation SH
    Cai J; Du Y; Kan Q; Zhang Q; Miao H; Kang G
    Ultrasonics; 2023 Sep; 134():107106. PubMed ID: 37467523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Frequency Interrogation and Hierarchical Evaluation Scheme for SAW Reflective Delay-Line Sensors.
    Shi R; Ruan J; Lv J; Zhang C; Han T; Qin P; Li P; Wen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1258-1266. PubMed ID: 31398115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of viscous losses in the chemical interface layer of Love wave sensors.
    Jakoby B; Vellekoop MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):696-700. PubMed ID: 18238598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Mode Love-Wave SAW Magnetic-Field Sensors.
    Schmalz J; Kittmann A; Durdaut P; Spetzler B; Faupel F; Höft M; Quandt E; Gerken M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO(3) substrate as love wave sensors for chemical and biochemical sensing in liquids.
    Barié N; Stahl U; Rapp M
    Ultrasonics; 2010 May; 50(6):606-12. PubMed ID: 20092864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film.
    Wang W; Fan S; Liang Y; He S; Pan Y; Zhang C; Dong C
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30262725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity.
    Trivedi S; Nemade HB
    Ultrasonics; 2018 Mar; 84():150-161. PubMed ID: 29128738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Micro-Inertia and Flexoelectricity on Love Wave Propagation in Layered Piezoelectric Structures.
    Hrytsyna O; Sladek J; Sladek V
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate.
    Zhang S; Gu B; Zhang H; Feng XQ; Pan R; Alamusi ; Hu N
    Ultrasonics; 2016 Mar; 66():65-71. PubMed ID: 26678787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.