These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 27874123)
1. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Hua XW; Bao YW; Wang HY; Chen Z; Wu FG Nanoscale; 2017 Feb; 9(6):2150-2161. PubMed ID: 27874123 [TBL] [Abstract][Full Text] [Related]
2. Beer yeast-derived fluorescent carbon dots for photoinduced bactericidal functions and multicolor imaging of bacteria. Gao Z; Zhao CX; Li YY; Yang YL Appl Microbiol Biotechnol; 2019 Jun; 103(11):4585-4593. PubMed ID: 30963206 [TBL] [Abstract][Full Text] [Related]
3. High photoluminescence nitrogen, phosphorus co-doped carbon nanodots for assessment of microbial viability. Qie X; Zan M; Li L; Gui P; Chang Z; Ge M; Wang RS; Guo Z; Dong WF Colloids Surf B Biointerfaces; 2020 Jul; 191():110987. PubMed ID: 32325360 [TBL] [Abstract][Full Text] [Related]
4. Exopolysaccharide-Derived Carbon Dots for Microbial Viability Assessment. Lin F; Li C; Chen Z Front Microbiol; 2018; 9():2697. PubMed ID: 30473686 [TBL] [Abstract][Full Text] [Related]
5. Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells. Yu XW; Liu X; Jiang YW; Li YH; Gao G; Zhu YX; Lin F; Wu FG Anal Chem; 2022 Mar; 94(10):4243-4251. PubMed ID: 35235297 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anand A; Huang CC; Lai JY; Bano D; Pardede HI; Hussain A; Saleem S; Unnikrishnan B Anal Bioanal Chem; 2024 Jul; 416(17):3907-3921. PubMed ID: 38656364 [TBL] [Abstract][Full Text] [Related]
7. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p-nitrophenol detection. Qin K; Zhang D; Ding Y; Zheng X; Xiang Y; Hua J; Zhang Q; Ji X; Li B; Wei Y Analyst; 2019 Dec; 145(1):177-183. PubMed ID: 31729506 [TBL] [Abstract][Full Text] [Related]
8. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Liu Y; Xu Y; Wen Q Anal Biochem; 2024 Apr; 687():115432. PubMed ID: 38113980 [TBL] [Abstract][Full Text] [Related]
9. Morpholine Derivative-Functionalized Carbon Dots-Based Fluorescent Probe for Highly Selective Lysosomal Imaging in Living Cells. Wu L; Li X; Ling Y; Huang C; Jia N ACS Appl Mater Interfaces; 2017 Aug; 9(34):28222-28232. PubMed ID: 28787116 [TBL] [Abstract][Full Text] [Related]
10. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Xue M; Zhang L; Zhan Z; Zou M; Huang Y; Zhao S Talanta; 2016 Apr; 150():324-30. PubMed ID: 26838415 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots. Jhonsi MA; Ananth DA; Nambirajan G; Sivasudha T; Yamini R; Bera S; Kathiravan A Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():295-302. PubMed ID: 29459160 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Song Y; Li H; Lu F; Wang H; Zhang M; Yang J; Huang J; Huang H; Liu Y; Kang Z J Mater Chem B; 2017 Aug; 5(30):6008-6015. PubMed ID: 32264357 [TBL] [Abstract][Full Text] [Related]
14. One-pot synthesis of fluorescent nitrogen-doped carbon dots with good biocompatibility for cell labeling. Zhang Z; Yan K; Yang Q; Liu Y; Yan Z; Chen J Luminescence; 2017 Dec; 32(8):1488-1493. PubMed ID: 28590024 [TBL] [Abstract][Full Text] [Related]
15. Serratia marcescens-derived fluorescent carbon dots as a platform toward multi-mode bioimaging and detection of p-nitrophenol. Ding Y; Tan W; Zheng X; Ji X; Song P; Bao L; Zhang C; Shang J; Qin K; Wei Y Analyst; 2021 Jan; 146(2):683-690. PubMed ID: 33210668 [TBL] [Abstract][Full Text] [Related]
16. Facile Hydrothermal Synthesis of Chlorella-Derived Environmentally Friendly Fluorescent Carbon Dots for Differentiation of Living and Dead Chlorella. Dong D; Liu T; Liang D; Jin X; Qi Z; Li A; Ning Y ACS Appl Bio Mater; 2021 Apr; 4(4):3697-3705. PubMed ID: 35014454 [TBL] [Abstract][Full Text] [Related]
17. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Jana J; Ganguly M; Das B; Dhara S; Negishi Y; Pal T Talanta; 2016 Apr; 150():253-64. PubMed ID: 26838406 [TBL] [Abstract][Full Text] [Related]
18. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Du F; Zhang M; Li X; Li J; Jiang X; Li Z; Hua Y; Shao G; Jin J; Shao Q; Zhou M; Gong A Nanotechnology; 2014 Aug; 25(31):315702. PubMed ID: 25036467 [TBL] [Abstract][Full Text] [Related]
19. One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Gao Z; Yang D; Wan Y; Yang Y Anal Bioanal Chem; 2020 Feb; 412(4):871-880. PubMed ID: 31901958 [TBL] [Abstract][Full Text] [Related]
20. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. Stiefel P; Schmidt-Emrich S; Maniura-Weber K; Ren Q BMC Microbiol; 2015 Feb; 15():36. PubMed ID: 25881030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]