BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27874208)

  • 1. Steady-state protein focusing in carrier ampholyte based isoelectric focusing: Part I-Analytical solution.
    Shim J; Yoo K; Dutta P
    Electrophoresis; 2017 Mar; 38(5):659-666. PubMed ID: 27874208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state protein focusing in carrier ampholyte-based isoelectric focusing: Part II-validation and case studies.
    Shim J; Yoo K; Dutta P
    Electrophoresis; 2017 Mar; 38(5):667-676. PubMed ID: 27868220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing.
    Stoyanov AV; Das C; Fredrickson CK; Fan ZH
    Electrophoresis; 2005 Jan; 26(2):473-9. PubMed ID: 15657903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient.
    Wang Z; Ivory C; Minerick AR
    Electrophoresis; 2017 Oct; 38(20):2565-2575. PubMed ID: 28722147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient algorithm for simulation of isoelectric focusing.
    Yoo K; Shim J; Liu J; Dutta P
    Electrophoresis; 2014 Mar; 35(5):638-45. PubMed ID: 24165899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ampholyte concentration on protein behavior in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    Electrophoresis; 2008 Mar; 29(5):1026-35. PubMed ID: 18257108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus.
    Gombocz E; Cortez E
    Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady-state model to the current two-stage model of isoelectric focusing.
    Vigh G; Gas B
    Electrophoresis; 2023 Apr; 44(7-8):667-674. PubMed ID: 36640145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein.
    Wang S; Zhang L; Sun H; Chu Z; Chen H; Zhao Y; Zhang W
    Electrophoresis; 2019 Sep; 40(18-19):2610-2617. PubMed ID: 30977523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state concentration distribution of ampholytes in isoelectric focusing in a linear immobilized pH gradient.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1998 Jul; 19(10):1596-600. PubMed ID: 9719532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Alpher, Bethe, Gamow of isoelectric focusing, the alpha-Centaury of electrokinetic methodologies. Part I.
    Righetti PG
    Electrophoresis; 2006 Mar; 27(5-6):923-38. PubMed ID: 16440396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment.
    Vigh G; Gaš B
    Electrophoresis; 2023 Apr; 44(7-8):675-688. PubMed ID: 36641504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CE determination of the thermodynamic pK
    Ansorge M; Gaš B; Boublík M; Malý M; Šteflová J; Hruška V; Vigh G
    Electrophoresis; 2020 Apr; 41(7-8):514-522. PubMed ID: 31721266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier ampholyte-free isoelectric focusing on a paper-based analytical device for the fractionation of proteins.
    Xie SF; Gao H; Niu LL; Xie ZS; Fang F; Wu ZY; Yang FQ
    J Sep Sci; 2018 May; 41(9):2085-2091. PubMed ID: 29370473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ampholyte dissociation constants on protein separation in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3719-28. PubMed ID: 19051929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electrolyte pH on CIEF with narrow pH range ampholytes.
    Páger C; Vargová A; Takácsi-Nagy A; Dörnyei Á; Kilár F
    Electrophoresis; 2012 Nov; 33(22):3269-75. PubMed ID: 23086725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New developments in isoelectric focusing.
    Righetti PG; Gianazza E
    J Chromatogr; 1980 Nov; 184(4):415-56. PubMed ID: 7451590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel ampholyte buffer for isoelectric focusing: electric charge-separation of protein samples for X-ray crystallography using free-flow isoelectric focusing.
    Kim SH; Miyatake H; Ueno T; Nagao T; Miki K
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):799-802. PubMed ID: 15930643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.