These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27874253)
1. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. Romero R; Travers JK; Asbury E; Pennybaker A; Chubb L; Rose R; Ehrhart NP; Kipper MJ J Biomed Mater Res A; 2017 Mar; 105(3):900-911. PubMed ID: 27874253 [TBL] [Abstract][Full Text] [Related]
2. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Hoffman MD; Benoit DS Biomaterials; 2015 Jun; 52():426-40. PubMed ID: 25818449 [TBL] [Abstract][Full Text] [Related]
3. Bone allografts combined with adipose-derived stem cells in an optimized cell/volume ratio showed enhanced osteogenesis and angiogenesis in a murine femur defect model. Wagner JM; Conze N; Lewik G; Wallner C; Brune JC; Dittfeld S; Jaurich H; Becerikli M; Dadras M; Harati K; Fischer S; Lehnhardt M; Behr B J Mol Med (Berl); 2019 Oct; 97(10):1439-1450. PubMed ID: 31367858 [TBL] [Abstract][Full Text] [Related]
4. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266 [TBL] [Abstract][Full Text] [Related]
5. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Xie C; Reynolds D; Awad H; Rubery PT; Pelled G; Gazit D; Guldberg RE; Schwarz EM; O'Keefe RJ; Zhang X Tissue Eng; 2007 Mar; 13(3):435-45. PubMed ID: 17518596 [TBL] [Abstract][Full Text] [Related]
6. Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Romero R; Chubb L; Travers JK; Gonzales TR; Ehrhart NP; Kipper MJ Carbohydr Polym; 2015 May; 122():144-51. PubMed ID: 25817653 [TBL] [Abstract][Full Text] [Related]
7. Bone tissue engineering by way of allograft revitalization: mechanistic and mechanical investigations using a porcine model. Runyan CM; Ali ST; Chen W; Calder BW; Rumburg AE; Billmire DA; Taylor JA J Oral Maxillofac Surg; 2014 May; 72(5):1000.e1-11. PubMed ID: 24742484 [TBL] [Abstract][Full Text] [Related]
8. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Wang T; Zhai Y; Nuzzo M; Yang X; Yang Y; Zhang X Biomaterials; 2018 Nov; 182():279-288. PubMed ID: 30142527 [TBL] [Abstract][Full Text] [Related]
9. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Hoffman MD; Xie C; Zhang X; Benoit DS Biomaterials; 2013 Nov; 34(35):8887-98. PubMed ID: 23958029 [TBL] [Abstract][Full Text] [Related]
11. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells. Moghadasi Boroujeni S; Mashayekhan S; Vakilian S; Ardeshirylajimi A; Soleimani M J Biomed Mater Res A; 2016 Jul; 104(7):1610-21. PubMed ID: 26879731 [TBL] [Abstract][Full Text] [Related]
12. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Long T; Zhu Z; Awad HA; Schwarz EM; Hilton MJ; Dong Y Biomaterials; 2014 Mar; 35(9):2752-9. PubMed ID: 24393269 [TBL] [Abstract][Full Text] [Related]
13. Human adipose-derived mesenchymal stem cells alleviate obliterative bronchiolitis in a murine model via IDO. Zheng G; Qiu G; Ge M; He J; Huang L; Chen P; Wang W; Xu Q; Hu Y; Shu Q; Xu J Respir Res; 2017 Jun; 18(1):119. PubMed ID: 28619045 [TBL] [Abstract][Full Text] [Related]
14. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. Khan S; Villalobos MA; Choron RL; Chang S; Brown SA; Carpenter JP; Tulenko TN; Zhang P J Vasc Surg; 2017 May; 65(5):1483-1492. PubMed ID: 27514438 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
16. Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. Henrich D; Seebach C; Nau C; Basan S; Relja B; Wilhelm K; Schaible A; Frank J; Barker J; Marzi I J Tissue Eng Regen Med; 2016 Oct; 10(10):E382-E396. PubMed ID: 24668794 [TBL] [Abstract][Full Text] [Related]
17. Effect of TGF-β1 Stimulation on the Secretome of Human Adipose-Derived Mesenchymal Stromal Cells. Rodríguez TM; Saldías A; Irigo M; Zamora JV; Perone MJ; Dewey RA Stem Cells Transl Med; 2015 Aug; 4(8):894-8. PubMed ID: 26025982 [TBL] [Abstract][Full Text] [Related]
18. Wrapped omentum with periosteum concurrent with adipose derived adult stem cells for bone tissue engineering in dog model. Sadegh AB; Basiri E; Oryan A; Mirshokraei P Cell Tissue Bank; 2014 Mar; 15(1):127-37. PubMed ID: 23793779 [TBL] [Abstract][Full Text] [Related]
20. Large scale segmental bone defect healing through the combined delivery of VEGF and BMP-2 from biofunctionalized cortical allografts. Sharmin F; O'Sullivan M; Malinowski S; Lieberman JR; Khan Y J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1002-1010. PubMed ID: 30296356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]