BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27875101)

  • 1. Nonwoven textile for use in a nanoparticle respiratory deposition sampler.
    Vosburgh DJ; Park JH; Mines LW; Mudunkotuwa IA; Anthony TR; Peters TM
    J Occup Environ Hyg; 2017 May; 14(5):368-376. PubMed ID: 27875101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle Concentrations in Occupational Settings Measured with a Nanoparticle Respiratory Deposition (NRD) Sampler.
    Stebounova LV; Gonzalez-Pech NI; Park JH; Anthony TR; Grassian VH; Peters TM
    Ann Work Expo Health; 2018 Jul; 62(6):699-710. PubMed ID: 29788211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Evaluation of a High-Flowrate Nanoparticle Respiratory Deposition (NRD) Sampler.
    McCollom TIS; Stebounova LV; Park JH; Grassian VH; Gonzalez-Pech NI; Peters TM
    J Aerosol Sci; 2019 Aug; 134():72-79. PubMed ID: 37752991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer.
    Harper M; Pacolay B
    J Environ Monit; 2006 Jan; 8(1):140-6. PubMed ID: 16395471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A personal nanoparticle respiratory deposition (NRD) sampler.
    Cena LG; Anthony TR; Peters TM
    Environ Sci Technol; 2011 Aug; 45(15):6483-90. PubMed ID: 21718022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Polyurethane Foam for Use as a Particle Collection Substrate in a Nanoparticle Respiratory Deposition Sampler.
    Mines LWD; Park JH; Mudunkotuwa IA; Anthony TR; Grassian VH; Peters TM
    Aerosol Sci Technol; 2016; 50(5):497-506. PubMed ID: 28867869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for assessing respiratory deposition of welding fume nanoparticles.
    Cena LG; Keane MJ; Chisholm WP; Stone S; Harper M; Chen BT
    J Occup Environ Hyg; 2014; 11(12):771-80. PubMed ID: 24824154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a novel personal nanoparticle sampler.
    Zhou Y; Irshad H; Tsai CJ; Hung SM; Cheng YS
    Environ Sci Process Impacts; 2014 Feb; 16(2):203-10. PubMed ID: 24337074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a bronze foundry.
    Harper M; Pacolay B; Andrew ME
    J Environ Monit; 2005 Jun; 7(6):592-7. PubMed ID: 15931420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces.
    Tsai CJ; Liu CN; Hung SM; Chen SC; Uang SN; Cheng YS; Zhou Y
    Environ Sci Technol; 2012 Apr; 46(8):4546-52. PubMed ID: 22435654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.
    Cena LG; Chisholm WP; Keane MJ; Chen BT
    J Occup Environ Hyg; 2015; 12(10):721-8. PubMed ID: 25985454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of X-ray fluorescence and wet chemical analysis of air filter samples from a scrap lead smelting operation.
    Harper M; Hallmark TS; Andrew ME; Bird AJ
    J Environ Monit; 2004 Oct; 6(10):819-26. PubMed ID: 15480496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory and field testing of sampling methods for inhalable and respirable dust.
    Linnainmaa M; Laitinen J; Leskinen A; Sippula O; Kalliokoski P
    J Occup Environ Hyg; 2008 Jan; 5(1):28-35. PubMed ID: 18041642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field performance of the CATHIA-T sampler and two cyclones against the standard Cowled sampler for thoracic fiber concentrations.
    Lee EG; Nelson J; Hintz PJ; Joy G; Andrew ME; Harper M
    Ann Occup Hyg; 2010 Jul; 54(5):545-56. PubMed ID: 20457784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.
    Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME
    J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.
    Dahlin J; Spanne M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2008 Jul; 52(5):361-74. PubMed ID: 18458354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling of respirable isocyanate particles.
    Gylestam D; Gustavsson M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2014 Apr; 58(3):340-54. PubMed ID: 24371044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.