These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27875101)

  • 41. Environmental exposure characterization of fish processing workers.
    Jeebhay MF; Robins TG; Seixas N; Baatjies R; George DA; Rusford E; Lehrer SB; Lopata AL
    Ann Occup Hyg; 2005 Jul; 49(5):423-37. PubMed ID: 15705596
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exposure to dust and endotoxin in textile processing workers.
    Paudyal P; Semple S; Niven R; Tavernier G; Ayres JG
    Ann Occup Hyg; 2011 May; 55(4):403-9. PubMed ID: 21177262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioaerosol sampling by a personal rotating cup sampler CIP 10-M.
    Görner P; Fabriès JF; Duquenne P; Witschger O; Wrobel R
    J Environ Monit; 2006 Jan; 8(1):43-8. PubMed ID: 16395458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Work area measurements as predictors of personal exposure to endotoxin and cotton dust in the cotton textile industry.
    Mehta AJ; Wang XR; Eisen EA; Dai HL; Astrakianakis G; Seixas N; Camp J; Checkoway H; Christiani DC
    Ann Occup Hyg; 2008 Jan; 52(1):45-54. PubMed ID: 18089577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Errors and misunderstandings invalidate estimates of titanium dioxide inhalation risk.
    Tomenson JA; Morfeld P
    Sci Total Environ; 2010 Apr; 408(9):2173-4; author reply 2175-8. PubMed ID: 20129648
    [No Abstract]   [Full Text] [Related]  

  • 47. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.
    Kreider ML; Cyrs WD; Tosiano MA; Panko JM
    Ann Occup Hyg; 2015 Nov; 59(9):1122-34. PubMed ID: 26209596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Field sampling investigations within the road paving industry.
    Deygout F; Le Coutaller P
    J Occup Environ Hyg; 2010 Feb; 7(2):103-8. PubMed ID: 19953414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--Part B: Results from 12 field studies.
    Methner M; Hodson L; Dames A; Geraci C
    J Occup Environ Hyg; 2010 Mar; 7(3):163-76. PubMed ID: 20063229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A New Miniature Respirable Sampler for In-mask Sampling: Part 1-Particle Size Selection Performance.
    Stacey P; Thorpe A; Mogridge R; Lee T; Harper M
    Ann Occup Hyg; 2016 Nov; 60(9):1072-1083. PubMed ID: 27630151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Granular Bed for Use in a Nanoparticle Respiratory Deposition Sampler.
    Park JH; Mudunkotuwa IA; Mines LW; Anthony TR; Grassian VH; Peters TM
    Aerosol Sci Technol; 2015; 49(3):179-187. PubMed ID: 26900208
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Field testing of a personal size-selective bioaerosol sampler.
    Kenny LC; Bowry A; Crook B; Stancliffe JD
    Ann Occup Hyg; 1999 Aug; 43(6):393-404. PubMed ID: 10518465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.
    Methner M; Beaucham C; Crawford C; Hodson L; Geraci C
    J Occup Environ Hyg; 2012; 9(9):543-55. PubMed ID: 22816668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles.
    Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE
    J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new approach for diffusive sampling based on SPME for occupational exposure assessment.
    Marín P; Periago JF; Prado C
    J Occup Environ Hyg; 2013; 10(3):132-42. PubMed ID: 23356408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Passive aerosol sampler for particle concentrations and size distributions.
    Whitehead T; Leith D
    J Environ Monit; 2008 Mar; 10(3):331-5. PubMed ID: 18392275
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a personal bioaerosol sampler based on a conical cyclone with recirculating liquid film.
    Tolchinsky AD; Sigaev VI; Sigaev GI; Varfolomeev AN; Zvyagina EV; Brasel T; Cheng YS
    J Occup Environ Hyg; 2010 Mar; 7(3):156-62. PubMed ID: 20017057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A New Miniature Respirable Sampler for In-mask Sampling: Part 2-Tests Performed Inside the Mask.
    Mogridge R; Stacey P; Forder J
    Ann Occup Hyg; 2016 Nov; 60(9):1084-1091. PubMed ID: 27630150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.