These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27875220)

  • 1. High-Quality-Factor and Low-Temperature-Dependence SMR FBAR Based on BST Using MOD Method.
    Mansour AA; Kalkur TS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):452-462. PubMed ID: 27875220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchable and Tunable BAW Duplexer Based on Ferroelectric Material.
    Mansour AA; Kalkur TS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2224-2230. PubMed ID: 27913334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Intrinsically Switchable Ladder-Type Ferroelectric BST-on-Si Composite FBAR Filter.
    Lee S; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):456-62. PubMed ID: 26766372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative Piezoelectric-Based Electric-Field-Actuated Mode-Switchable Multilayer Ferroelectric FBARs for Selective Control of Harmonic Resonances Without Degrading K
    Koohi MZ; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1922-1930. PubMed ID: 32310766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact Intrinsically Switchable FBAR Filters Utilizing Ferroelectric BST.
    Zolfagharloo Koohi M; Lee S; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1468-1474. PubMed ID: 29994307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically Switchable and Bandwidth Reconfigurable Ferroelectric Bulk Acoustic Wave Filters.
    Koohi MZ; Nam S; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):1025-1032. PubMed ID: 31831412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically switchable, high-Q ferroelectricon-silicon composite film bulk acoustic resonators.
    Sis SA; Lee S; Lee V; Bayraktaroglu AK; Phillips JD; Mortazawi A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):231-8. PubMed ID: 24474130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linearity and temperature dependence of large-area processed high-q barium strontium titanate thin-film varactors.
    Subramanyam G; Patterson M; Leedy K; Neidhard R; Varanasi C; Zhang C; Steinhauer G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1692-5. PubMed ID: 20639162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of ZnO temperature coefficients using thin film bulk acoustic wave resonators.
    Pinkett SL; Hunt WD; Barber BP; Gammel PL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1491-6. PubMed ID: 12484471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of area on BAW resonator performance and an approach to device miniaturization.
    Nguyen N; Johannessen A; Rooth S; Hanke U
    Ultrasonics; 2019 Apr; 94():92-101. PubMed ID: 30595389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators.
    Knapp M; Hoffmann R; Lebedev V; Cimalla V; Ambacher O
    Nanotechnology; 2018 Mar; 29(10):105302. PubMed ID: 29320371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of AlGaN High Frequency Bulk Acoustic Resonator by Reactive RF Magnetron Co-sputtering System.
    Chang YC; Chen YC; Cheng CC
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of compensating the temperature coefficient of frequency with the acoustic reflector layers on the overall performance of solidly mounted resonators.
    Munir J; Mirea T; DeMiguel-Ramos M; Saeed MA; Bin Shaari A; Iborra E
    Ultrasonics; 2017 Feb; 74():153-160. PubMed ID: 28027989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications.
    Zou Y; Gao C; Zhou J; Liu Y; Xu Q; Qu Y; Liu W; Soon JBW; Cai Y; Sun C
    Microsyst Nanoeng; 2022; 8():124. PubMed ID: 36457715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies.
    Ivira B; Benech P; Fillit R; Ndagijimana F; Ancey P; Parat G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):421-30. PubMed ID: 18334348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An L-section DC electric field switchable bulk acoustic wave solidly mounted resonator filter based on Ba0.5Sr0.5TiO3.
    Saddik GN; York RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2036-41. PubMed ID: 23007778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz-3.2 GHz S-Band.
    Gao C; Zheng Y; Li H; Ren Y; Gu X; Huang X; Wang Y; Qu Y; Liu Y; Cai Y; Sun C
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable thin film bulk acoustic wave resonator based on Ba(x)Sr(1-x)TiO3 thin film.
    Noeth A; Yamada T; Muralt P; Tagantsev AK; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):379-85. PubMed ID: 20178903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators.
    Chung CJ; Chen YC; Cheng CC; Kao KS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):857-64. PubMed ID: 18467230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 3.4 GHz BAW RF Filter Based on Single Crystal AlN Resonator for 5G Application.
    Ding R; Xuan W; Dong S; Zhang B; Gao F; Liu G; Zhang Z; Jin H; Luo J
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.