BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 27875300)

  • 41. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.
    Herzel L; Straube K; Neugebauer KM
    Genome Res; 2018 Jul; 28(7):1008-1019. PubMed ID: 29903723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. spp42, identified as a classical suppressor of prp4-73, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p.
    Schmidt H; Richert K; Drakas RA; Käufer NF
    Genetics; 1999 Nov; 153(3):1183-91. PubMed ID: 10545451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing.
    Borao S; Ayté J; Hümmer S
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcription and RNA-processing in fission yeast mitochondria.
    Schäfer B; Hansen M; Lang BF
    RNA; 2005 May; 11(5):785-95. PubMed ID: 15811919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defining the Functional Interactome of Spliceosome-Associated G-Patch Protein Gpl1 in the Fission Yeast
    Selicky T; Jurcik M; Mikolaskova B; Pitelova A; Mayerova N; Kretova M; Osadska M; Jurcik J; Holic R; Kohutova L; Bellova J; Benko Z; Gregan J; Bagelova Polakova S; Barath P; Cipak L; Cipakova I
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promoter-driven splicing regulation in fission yeast.
    Moldón A; Malapeira J; Gabrielli N; Gogol M; Gómez-Escoda B; Ivanova T; Seidel C; Ayté J
    Nature; 2008 Oct; 455(7215):997-1000. PubMed ID: 18815595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific splicing defects in S. pombe carrying a degron allele of the Survival of Motor Neuron gene.
    Campion Y; Neel H; Gostan T; Soret J; Bordonné R
    EMBO J; 2010 Jun; 29(11):1817-29. PubMed ID: 20400941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nuclear pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe strictly requires an intron-contained, conserved sequence element.
    Mertins P; Gallwitz D
    EMBO J; 1987 Jun; 6(6):1757-63. PubMed ID: 3649292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The fission yeast prp10(+) gene involved in pre-mRNA splicing encodes a homologue of highly conserved splicing factor, SAP155.
    Habara Y; Urushiyama S; Tani T; Ohshima Y
    Nucleic Acids Res; 1998 Dec; 26(24):5662-9. PubMed ID: 9837997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and functional analysis of hPRP17, the human homologue of the PRP17/CDC40 yeast gene involved in splicing and cell cycle control.
    Ben Yehuda S; Dix I; Russell CS; Levy S; Beggs JD; Kupiec M
    RNA; 1998 Oct; 4(10):1304-12. PubMed ID: 9769104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular choreography of pre-mRNA splicing by the spliceosome.
    Wan R; Bai R; Shi Y
    Curr Opin Struct Biol; 2019 Dec; 59():124-133. PubMed ID: 31476650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10.
    Livesay SB; Collier SE; Bitton DA; Bähler J; Ohi MD
    Eukaryot Cell; 2013 Nov; 12(11):1472-89. PubMed ID: 24014766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dependence of pre-mRNA introns on PRP17, a non-essential splicing factor: implications for efficient progression through cell cycle transitions.
    Chawla G; Sapra AK; Surana U; Vijayraghavan U
    Nucleic Acids Res; 2003 May; 31(9):2333-43. PubMed ID: 12711678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe.
    Bottner CA; Schmidt H; Vogel S; Michele M; Käufer NF
    Curr Genet; 2005 Sep; 48(3):151-61. PubMed ID: 16133344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trans-complementation of the second step of pre-mRNA splicing by exogenous 5' exons.
    Chanfreau G; Gouyette C; Schwer B; Jacquier A
    RNA; 1999 Jul; 5(7):876-82. PubMed ID: 10411131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.
    Wilhelm BT; Marguerat S; Watt S; Schubert F; Wood V; Goodhead I; Penkett CJ; Rogers J; Bähler J
    Nature; 2008 Jun; 453(7199):1239-43. PubMed ID: 18488015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and function of the Pre-mRNA splicing machine.
    Sperling J; Azubel M; Sperling R
    Structure; 2008 Nov; 16(11):1605-15. PubMed ID: 19000813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.
    Larson A; Fair BJ; Pleiss JA
    G3 (Bethesda); 2016 Jun; 6(6):1513-23. PubMed ID: 27172183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1.
    Kilchert C; Wittmann S; Passoni M; Shah S; Granneman S; Vasiljeva L
    Cell Rep; 2015 Dec; 13(11):2504-2515. PubMed ID: 26670050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reverse self-splicing of group II intron RNAs in vitro.
    Augustin S; Müller MW; Schweyen RJ
    Nature; 1990 Jan; 343(6256):383-6. PubMed ID: 1689013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.