These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27875968)

  • 1. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.
    Kim DS; Choi JR; Ko JA; Kim K
    Curr Protein Pept Sci; 2018; 19(1):16-21. PubMed ID: 27875968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Minimized Chemoenzymatic Cascade for Bacterial Luciferase in Bioreporter Applications.
    Phonbuppha J; Tinikul R; Wongnate T; Intasian P; Hollmann F; Paul CE; Chaiyen P
    Chembiochem; 2020 Jul; 21(14):2073-2079. PubMed ID: 32187433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli.
    Campbell ZT; Baldwin TO
    J Biol Chem; 2009 Mar; 284(13):8322-8. PubMed ID: 19139094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model.
    Lei B; Ding Q; Tu SC
    Biochemistry; 2004 Dec; 43(50):15975-82. PubMed ID: 15595854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter.
    Tinikul R; Thotsaporn K; Thaveekarn W; Jitrapakdee S; Chaiyen P
    J Biotechnol; 2012 Dec; 162(2-3):346-53. PubMed ID: 23000378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.
    Campbell ZT; Weichsel A; Montfort WR; Baldwin TO
    Biochemistry; 2009 Jul; 48(26):6085-94. PubMed ID: 19435287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer.
    Kaku T; Sugiura K; Entani T; Osabe K; Nagai T
    Sci Rep; 2021 Jul; 11(1):14994. PubMed ID: 34294849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial luciferase: Molecular mechanisms and applications.
    Tinikul R; Chunthaboon P; Phonbuppha J; Paladkong T
    Enzymes; 2020; 47():427-455. PubMed ID: 32951831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial: Futuristic Protein Engineering: Developments and Avenues.
    Shukla P
    Curr Protein Pept Sci; 2018; 19(1):3-4. PubMed ID: 29197322
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.
    Brodl E; Ivkovic J; Tabib CR; Breinbauer R; Macheroux P
    Bioorg Med Chem; 2017 Feb; 25(4):1487-1495. PubMed ID: 28126438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species.
    Cho KW; Tu SC; Shao R
    Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol.
    Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM
    J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of a critical residue (Glu175) in structure and function of bacterial luciferase.
    Madvar AR; Hosseinkhani S; Khajeh K; Ranjbar B; Asoodeh A
    FEBS Lett; 2005 Aug; 579(21):4701-6. PubMed ID: 16098518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into the Bacterial Luciferase-based Bioluminescence Resonance Energy Transfer Luminescence: The Role of Protein Complex Dimer.
    Luo Y; Pi S; Liu YJ
    Chemphyschem; 2024 May; 25(9):e202300973. PubMed ID: 38345139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of phenobarbital on the luminescence system of luminous bacteria].
    Vysotskiĭ ES; Zavoruev VV; Mezhevikin VV
    Mikrobiologiia; 1981; 50(6):985-91. PubMed ID: 6977084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, Mechanism, and Mutation of Bacterial Luciferase.
    Tinikul R; Chaiyen P
    Adv Biochem Eng Biotechnol; 2016; 154():47-74. PubMed ID: 25487767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.