BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 27876054)

  • 21. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Riboswitch Signal Amplification by Controlling Plasmid Copy Number.
    Dwidar M; Yokobayashi Y
    ACS Synth Biol; 2019 Feb; 8(2):245-250. PubMed ID: 30682247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches.
    Kent R; Dixon N
    ACS Synth Biol; 2019 Apr; 8(4):884-901. PubMed ID: 30897329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from
    Bahoua B; Sevdalis SE; Soto AM
    Biochemistry; 2021 Sep; 60(37):2781-2794. PubMed ID: 34472844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter.
    Toymentseva AA; Schrecke K; Sharipova MR; Mascher T
    Microb Cell Fact; 2012 Oct; 11():143. PubMed ID: 23110498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-level extracellular protein expression in Bacillus subtilis by optimizing strong promoters based on the transcriptome of Bacillus subtilis and Bacillus megaterium.
    Liu X; Wang H; Wang B; Pan L
    Protein Expr Purif; 2018 Nov; 151():72-77. PubMed ID: 29894806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements.
    Phan TT; Nguyen HD; Schumann W
    J Biotechnol; 2012 Jan; 157(1):167-72. PubMed ID: 22100269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attempted use of PACE for riboswitch discovery generates three new translational theophylline riboswitch side products.
    Shaver ZM; Bent SS; Bilby SR; Brown M; Buser A; Cuellar IG; Davis AJ; Doolan L; Enriquez FC; Estrada A; Herner S; Herron JC; Hunn AM; Hunter M; Johnston H; Koucky O; Mackley CC; Maghini D; Mattoon D; McDonald HT; Sinks H; Sprague AJ; Sullivan D; Tutar A; Umphreys A; Watson C; Zweerink D; Heyer LJ; Poet JL; Eckdahl TT; Campbell AM
    BMC Res Notes; 2018 Dec; 11(1):861. PubMed ID: 30518404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
    Wu MC; Lowe PT; Robinson CJ; Vincent HA; Dixon N; Leigh J; Micklefield J
    J Am Chem Soc; 2015 Jul; 137(28):9015-21. PubMed ID: 26106809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cis-Element Engineering Promotes the Expression of
    Niu J; Yan R; Shen J; Zhu X; Meng F; Lu Z; Lu F
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.
    Lemay JF; Desnoyers G; Blouin S; Heppell B; Bastet L; St-Pierre P; Massé E; Lafontaine DA
    PLoS Genet; 2011 Jan; 7(1):e1001278. PubMed ID: 21283784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Babina AM; Lea NE; Meyer MM
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089431
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters.
    Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP
    Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel engineering tool in the Bacillus subtilis toolbox: inducer-free activation of gene expression by selection-driven promoter decryptification.
    Dormeyer M; Egelkamp R; Thiele MJ; Hammer E; Gunka K; Stannek L; Völker U; Commichau FM
    Microbiology (Reading); 2015 Feb; 161(Pt 2):354-361. PubMed ID: 25473090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.