These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 27876778)
21. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697 [TBL] [Abstract][Full Text] [Related]
22. Cultivable butyrate-producing bacteria of elderly Japanese diagnosed with Alzheimer's disease. Nguyen TTT; Fujimura Y; Mimura I; Fujii Y; Nguyen NL; Arakawa K; Morita H J Microbiol; 2018 Oct; 56(10):760-771. PubMed ID: 30136260 [TBL] [Abstract][Full Text] [Related]
23. Fecal bacterial microbiome diversity in chronic HIV-infected patients in China. Sun Y; Ma Y; Lin P; Tang YW; Yang L; Shen Y; Zhang R; Liu L; Cheng J; Shao J; Qi T; Tang Y; Cai R; Guan L; Luo B; Sun M; Li B; Pei Z; Lu H Emerg Microbes Infect; 2016 Apr; 5(4):e31. PubMed ID: 27048741 [TBL] [Abstract][Full Text] [Related]
24. Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Liu T; Hougen H; Vollmer AC; Hiebert SM Anaerobe; 2012 Jun; 18(3):331-7. PubMed ID: 22387300 [TBL] [Abstract][Full Text] [Related]
25. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. De Filippo C; Cavalieri D; Di Paola M; Ramazzotti M; Poullet JB; Massart S; Collini S; Pieraccini G; Lionetti P Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14691-6. PubMed ID: 20679230 [TBL] [Abstract][Full Text] [Related]
26. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. Fang S; Xiong X; Su Y; Huang L; Chen C BMC Microbiol; 2017 Jul; 17(1):162. PubMed ID: 28724349 [TBL] [Abstract][Full Text] [Related]
27. Cecal microbiome divergence of broiler chickens by sex and body weight. Lee KC; Kil DY; Sul WJ J Microbiol; 2017 Dec; 55(12):939-945. PubMed ID: 29214491 [TBL] [Abstract][Full Text] [Related]
28. Feeding strategy shapes gut metagenomic enrichment and functional specialization in captive lemurs. McKenney EA; O'Connell TM; Rodrigo A; Yoder AD Gut Microbes; 2018; 9(3):202-217. PubMed ID: 29182421 [TBL] [Abstract][Full Text] [Related]
29. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness. Yang H; Huang X; Fang S; Xin W; Huang L; Chen C Sci Rep; 2016 Jun; 6():27427. PubMed ID: 27255518 [TBL] [Abstract][Full Text] [Related]
30. Developmental Dynamic Analysis of the Excreted Microbiome of Chickens Using Next-Generation Sequencing. Lim S; Cho S; Caetano-Anolles K; Jeong SG; Oh MH; Park BY; Kim HJ; Cho S; Choi SH; Ryu S; Lee JH; Kim H; Ham JS J Mol Microbiol Biotechnol; 2015; 25(4):262-8. PubMed ID: 26138263 [TBL] [Abstract][Full Text] [Related]
31. Fecal bacterial diversity of wild Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Liu X; Fan P; Che R; Li H; Yi L; Zhao N; Garber PA; Li F; Jiang Z Am J Primatol; 2018 Apr; 80(4):e22753. PubMed ID: 29635791 [TBL] [Abstract][Full Text] [Related]
32. Sex differences in colonization of gut microbiota from a man with short-term vegetarian and inulin-supplemented diet in germ-free mice. Wang JJ; Wang J; Pang XY; Zhao LP; Tian L; Wang XP Sci Rep; 2016 Oct; 6():36137. PubMed ID: 27796317 [TBL] [Abstract][Full Text] [Related]
33. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Polansky O; Sekelova Z; Faldynova M; Sebkova A; Sisak F; Rychlik I Appl Environ Microbiol; 2015 Dec; 82(5):1569-76. PubMed ID: 26712550 [TBL] [Abstract][Full Text] [Related]
34. Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Tang Y; Underwood A; Gielbert A; Woodward MJ; Petrovska L Appl Environ Microbiol; 2014 Jan; 80(2):478-85. PubMed ID: 24212578 [TBL] [Abstract][Full Text] [Related]
35. Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Etxeberria U; Arias N; Boqué N; Macarulla MT; Portillo MP; Milagro FI; Martinez JA Benef Microbes; 2015 Mar; 6(1):97-111. PubMed ID: 25213025 [TBL] [Abstract][Full Text] [Related]
36. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges. Li Z; Wang Y; Li J; Liu F; He L; He Y; Wang S Mar Biotechnol (NY); 2016 Dec; 18(6):659-671. PubMed ID: 27819120 [TBL] [Abstract][Full Text] [Related]
37. Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Lei F; Yin Y; Wang Y; Deng B; Yu HD; Li L; Xiang C; Wang S; Zhu B; Wang X Appl Environ Microbiol; 2012 Aug; 78(16):5763-72. PubMed ID: 22685152 [TBL] [Abstract][Full Text] [Related]
38. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. Gong J; Si W; Forster RJ; Huang R; Yu H; Yin Y; Yang C; Han Y FEMS Microbiol Ecol; 2007 Jan; 59(1):147-57. PubMed ID: 17233749 [TBL] [Abstract][Full Text] [Related]
39. Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis. Jin Y; Zeng Z; Wu Y; Zhang S; Fu Z Toxicol Sci; 2015 Sep; 147(1):116-26. PubMed ID: 26071454 [TBL] [Abstract][Full Text] [Related]
40. A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Karlsson FH; Ussery DW; Nielsen J; Nookaew I Microb Ecol; 2011 Apr; 61(3):473-85. PubMed ID: 21222211 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]