BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27876823)

  • 1. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.
    Liao W; Ren J; Wang K; Wang S; Zeng F; Wang Y; Sun F
    Sci Rep; 2016 Nov; 6():37243. PubMed ID: 27876823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of metatranscriptomic samples based on k-tuple frequencies.
    Wang Y; Liu L; Chen L; Chen T; Sun F
    PLoS One; 2014; 9(1):e84348. PubMed ID: 24392128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Context Tree Inference Algorithm for Variable Length Markov Chain Model with Applications to Biological Sequence Analyses.
    An S; Ren J; Sun F; Wan L
    J Comput Biol; 2022 Aug; 29(8):839-856. PubMed ID: 35451885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene finding in metatranscriptomic sequences.
    Ismail WM; Ye Y; Tang H
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S8. PubMed ID: 25253067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithms for variable length Markov chain modeling.
    Bejerano G
    Bioinformatics; 2004 Mar; 20(5):788-9. PubMed ID: 14751999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal choice of word length when comparing two Markov sequences using a χ
    Bai X; Tang K; Ren J; Waterman M; Sun F
    BMC Genomics; 2017 Oct; 18(Suppl 6):732. PubMed ID: 28984181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
    Celaj A; Markle J; Danska J; Parkinson J
    Microbiome; 2014; 2():39. PubMed ID: 25411636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChimeRScope: a novel alignment-free algorithm for fusion transcript prediction using paired-end RNA-Seq data.
    Li Y; Heavican TB; Vellichirammal NN; Iqbal J; Guda C
    Nucleic Acids Res; 2017 Jul; 45(13):e120. PubMed ID: 28472320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDBA-MTP: A Hybrid Metatranscriptomic Assembler Based on Protein Information.
    Leung HC; Yiu SM; Chin FY
    J Comput Biol; 2015 May; 22(5):367-76. PubMed ID: 25535824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of k-tuple length on sample-comparison with high-throughput sequencing data.
    Wang Y; Lei X; Wang S; Wang Z; Song N; Zeng F; Chen T
    Biochem Biophys Res Commun; 2016 Jan; 469(4):1021-7. PubMed ID: 26721429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology.
    Leung HC; Yiu SM; Parkinson J; Chin FY
    J Comput Biol; 2013 Jul; 20(7):540-50. PubMed ID: 23829653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects.
    Wang Y; Hu H; Li X
    OMICS; 2016 Aug; 20(8):470-9. PubMed ID: 27447888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq read alignments with PALMapper.
    Jean G; Kahles A; Sreedharan VT; De Bona F; Rätsch G
    Curr Protoc Bioinformatics; 2010 Dec; Chapter 11():Unit 11.6. PubMed ID: 21154708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalization of the PST algorithm: modeling the sparse nature of protein sequences.
    Leonardi FG
    Bioinformatics; 2006 Jun; 22(11):1302-7. PubMed ID: 16527830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. rRNASelector: a computer program for selecting ribosomal RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries.
    Lee JH; Yi H; Chun J
    J Microbiol; 2011 Aug; 49(4):689-91. PubMed ID: 21887657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. seq++: analyzing biological sequences with a range of Markov-related models.
    Miele V; Bourguignon PY; Robelin D; Nuel G; Richard H
    Bioinformatics; 2005 Jun; 21(11):2783-4. PubMed ID: 15774554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures.
    Pollier J; Rombauts S; Goossens A
    Methods Mol Biol; 2013; 1011():305-15. PubMed ID: 23616006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MetaDomain: a profile HMM-based protein domain classification tool for short sequences.
    Zhang Y; Sun Y
    Pac Symp Biocomput; 2012; ():271-82. PubMed ID: 22174282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VennBLAST—whole transcriptome comparison and visualization tool.
    Zahavi T; Stelzer G; Strauss L; Salmon AY; Salmon-Divon M
    Genomics; 2015 Mar; 105(3):131-6. PubMed ID: 25535680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.