BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27877089)

  • 41. Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG.
    Kwon SK; Lee DH; Kim SY; Park JH; Choi J; Baek KH
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1443-1448. PubMed ID: 27956178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells.
    Hastreiter S; Skylaki S; Loeffler D; Reimann A; Hilsenbeck O; Hoppe PS; Coutu DL; Kokkaliaris KD; Schwarzfischer M; Anastassiadis K; Theis FJ; Schroeder T
    Stem Cell Reports; 2018 Jul; 11(1):58-69. PubMed ID: 29779897
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells.
    Choi SC; Choi JH; Park CY; Ahn CM; Hong SJ; Lim DS
    J Cell Physiol; 2012 Nov; 227(11):3678-92. PubMed ID: 22378194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Embryonic stem cell factors and pancreatic cancer.
    Herreros-Villanueva M; Bujanda L; Billadeau DD; Zhang JS
    World J Gastroenterol; 2014 Mar; 20(9):2247-54. PubMed ID: 24605024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells.
    Lu H; Lyu Y; Tran L; Lan J; Xie Y; Yang Y; Murugan NL; Wang YJ; Semenza GL
    Cell Rep; 2021 Sep; 36(13):109757. PubMed ID: 34592152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells.
    Gawlik-Rzemieniewska N; Bednarek I
    Cancer Biol Ther; 2016; 17(1):1-10. PubMed ID: 26618281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell self-renewal.
    Liu H; Zhao B; Chen Y; You D; Liu R; Rong M; Ji W; Zheng P; Lai R
    FASEB J; 2013 Aug; 27(8):3298-305. PubMed ID: 23660967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Network plasticity of pluripotency transcription factors in embryonic stem cells.
    Filipczyk A; Marr C; Hastreiter S; Feigelman J; Schwarzfischer M; Hoppe PS; Loeffler D; Kokkaliaris KD; Endele M; Schauberger B; Hilsenbeck O; Skylaki S; Hasenauer J; Anastassiadis K; Theis FJ; Schroeder T
    Nat Cell Biol; 2015 Oct; 17(10):1235-46. PubMed ID: 26389663
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and Isolation of Cancer Stem Cells Using NANOG-EGFP Reporter System.
    Buczek ME; Reeder SP; Regad T
    Methods Mol Biol; 2018; 1692():139-148. PubMed ID: 28986894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LGR5 Is a Gastric Cancer Stem Cell Marker Associated with Stemness and the EMT Signature Genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1.
    Wang B; Chen Q; Cao Y; Ma X; Yin C; Jia Y; Zang A; Fan W
    PLoS One; 2016; 11(12):e0168904. PubMed ID: 28033430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Klf5 is involved in self-renewal of mouse embryonic stem cells.
    Parisi S; Passaro F; Aloia L; Manabe I; Nagai R; Pastore L; Russo T
    J Cell Sci; 2008 Aug; 121(Pt 16):2629-34. PubMed ID: 18653541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal.
    Greber B; Lehrach H; Adjaye J
    BMC Dev Biol; 2007 May; 7():46. PubMed ID: 17506876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanog and transcriptional networks in embryonic stem cell pluripotency.
    Pan G; Thomson JA
    Cell Res; 2007 Jan; 17(1):42-9. PubMed ID: 17211451
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human endogenous retroviruses role in cancer cell stemness.
    Matteucci C; Balestrieri E; Argaw-Denboba A; Sinibaldi-Vallebona P
    Semin Cancer Biol; 2018 Dec; 53():17-30. PubMed ID: 30317035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolism in embryonic and cancer stemness.
    Jang H; Yang J; Lee E; Cheong JH
    Arch Pharm Res; 2015 Mar; 38(3):381-8. PubMed ID: 25598509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NANOG Metabolically Reprograms Tumor-Initiating Stem-like Cells through Tumorigenic Changes in Oxidative Phosphorylation and Fatty Acid Metabolism.
    Chen CL; Uthaya Kumar DB; Punj V; Xu J; Sher L; Tahara SM; Hess S; Machida K
    Cell Metab; 2016 Jan; 23(1):206-19. PubMed ID: 26724859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. E‑cadherin regulates proliferation of colorectal cancer stem cells through NANOG.
    Tamura S; Isobe T; Ariyama H; Nakano M; Kikushige Y; Takaishi S; Kusaba H; Takenaka K; Ueki T; Nakamura M; Akashi K; Baba E
    Oncol Rep; 2018 Aug; 40(2):693-703. PubMed ID: 29845283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MicroRNA-449a maintains self-renewal in liver cancer stem-like cells by targeting
    Zhang Q; Yang Z; Shan J; Liu L; Liu C; Shen J; Chen X; Xu Y; Chen J; Ma Q; Yang L; Qian C
    Oncotarget; 2017 Dec; 8(66):110187-110200. PubMed ID: 29299140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation.
    Morey L; Santanach A; Di Croce L
    Mol Cell Biol; 2015 Aug; 35(16):2716-28. PubMed ID: 26031336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model of cancer stem cells derived from mouse induced pluripotent stem cells.
    Chen L; Kasai T; Li Y; Sugii Y; Jin G; Okada M; Vaidyanath A; Mizutani A; Satoh A; Kudoh T; Hendrix MJ; Salomon DS; Fu L; Seno M
    PLoS One; 2012; 7(4):e33544. PubMed ID: 22511923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.