These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27877115)

  • 1. Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks.
    Lord LD; Expert P; Fernandes HM; Petri G; Van Hartevelt TJ; Vaccarino F; Deco G; Turkheimer F; Kringelbach ML
    Front Syst Neurosci; 2016; 10():85. PubMed ID: 27877115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homological scaffolds of brain functional networks.
    Petri G; Expert P; Turkheimer F; Carhart-Harris R; Nutt D; Hellyer PJ; Vaccarino F
    J R Soc Interface; 2014 Dec; 11(101):20140873. PubMed ID: 25401177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy.
    Zhang W; Muravina V; Azencott R; Chu ZD; Paldino MJ
    Comput Math Methods Med; 2018; 2018():6142898. PubMed ID: 30425750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI.
    Moody JF; Adluru N; Alexander AL; Field AS
    Semin Ultrasound CT MR; 2021 Oct; 42(5):507-522. PubMed ID: 34537118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity.
    Bian C; Xia N; Xie A; Cong S; Dong Q
    IEEE Trans Med Imaging; 2024 Jan; 43(1):503-516. PubMed ID: 37643097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homological landscape of human brain functional sub-circuits.
    Duong-Tran D; Kaufmann R; Chen J; Wang X; Garai S; Xu F; Bao J; Amico E; Kaplan AD; Petri G; Goni J; Zhao Y; Shen L
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph-based network analysis of resting-state functional MRI.
    Wang J; Zuo X; He Y
    Front Syst Neurosci; 2010; 4():16. PubMed ID: 20589099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph network analysis of immediate motor-learning induced changes in resting state BOLD.
    Sami S; Miall RC
    Front Hum Neurosci; 2013; 7():166. PubMed ID: 23720616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity.
    Sanz-Arigita EJ; Schoonheim MM; Damoiseaux JS; Rombouts SA; Maris E; Barkhof F; Scheltens P; Stam CJ
    PLoS One; 2010 Nov; 5(11):e13788. PubMed ID: 21072180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.
    Adhikari MH; Hacker CD; Siegel JS; Griffa A; Hagmann P; Deco G; Corbetta M
    Brain; 2017 Apr; 140(4):1068-1085. PubMed ID: 28334882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data.
    Wang JH; Zuo XN; Gohel S; Milham MP; Biswal BB; He Y
    PLoS One; 2011; 6(7):e21976. PubMed ID: 21818285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-dimensional persistent feature analysis identifies connectivity patterns of resting-state brain networks in Alzheimer's disease.
    Li J; Bian C; Luo H; Chen D; Cao L; Liang H
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33152713
    [No Abstract]   [Full Text] [Related]  

  • 14. A method for independent component graph analysis of resting-state fMRI.
    Ribeiro de Paula D; Ziegler E; Abeyasinghe PM; Das TK; Cavaliere C; Aiello M; Heine L; di Perri C; Demertzi A; Noirhomme Q; Charland-Verville V; Vanhaudenhuyse A; Stender J; Gomez F; Tshibanda JL; Laureys S; Owen AM; Soddu A
    Brain Behav; 2017 Mar; 7(3):e00626. PubMed ID: 28293468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs).
    Dimitriadis SI; Salis C; Tarnanas I; Linden DE
    Front Neuroinform; 2017; 11():28. PubMed ID: 28491032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining network topology and information theory to construct representative brain networks.
    Luppi AI; Stamatakis EA
    Netw Neurosci; 2021; 5(1):96-124. PubMed ID: 33688608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.
    Andellini M; Cannatà V; Gazzellini S; Bernardi B; Napolitano A
    J Neurosci Methods; 2015 Sep; 253():183-92. PubMed ID: 26072249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-retest reliability of graph metrics in functional brain networks: a resting-state fNIRS study.
    Niu H; Li Z; Liao X; Wang J; Zhao T; Shu N; Zhao X; He Y
    PLoS One; 2013; 8(9):e72425. PubMed ID: 24039763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A concise and persistent feature to study brain resting-state network dynamics: Findings from the Alzheimer's Disease Neuroimaging Initiative.
    Kuang L; Han X; Chen K; Caselli RJ; Reiman EM; Wang Y;
    Hum Brain Mapp; 2019 Mar; 40(4):1062-1081. PubMed ID: 30569583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.