These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27877116)

  • 41. Persisting Cross-Modal Changes in Sight-Recovery Individuals Modulate Visual Perception.
    Guerreiro MJS; Putzar L; Röder B
    Curr Biol; 2016 Nov; 26(22):3096-3100. PubMed ID: 27746025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Brain-Machine Interfaces to Assist the Blind.
    Ptito M; Bleau M; Djerourou I; Paré S; Schneider FC; Chebat DR
    Front Hum Neurosci; 2021; 15():638887. PubMed ID: 33633557
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain Plasticity in Blind Subjects Centralizes Beyond the Modal Cortices.
    Ortiz-Terán L; Ortiz T; Perez DL; Aragón JI; Diez I; Pascual-Leone A; Sepulcre J
    Front Syst Neurosci; 2016; 10():61. PubMed ID: 27458350
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortical activity during tactile exploration of objects in blind and sighted humans.
    Amedi A; Raz N; Azulay H; Malach R; Zohary E
    Restor Neurol Neurosci; 2010; 28(2):143-56. PubMed ID: 20404404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional relevance of cross-modal plasticity in blind humans.
    Cohen LG; Celnik P; Pascual-Leone A; Corwell B; Falz L; Dambrosia J; Honda M; Sadato N; Gerloff C; Catalá MD; Hallett M
    Nature; 1997 Sep; 389(6647):180-3. PubMed ID: 9296495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions.
    Théoret H; Merabet L; Pascual-Leone A
    J Physiol Paris; 2004; 98(1-3):221-33. PubMed ID: 15477034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects.
    Collignon O; Lassonde M; Lepore F; Bastien D; Veraart C
    Cereb Cortex; 2007 Feb; 17(2):457-65. PubMed ID: 16581983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Whole brain functional connectivity in the early blind.
    Liu Y; Yu C; Liang M; Li J; Tian L; Zhou Y; Qin W; Li K; Jiang T
    Brain; 2007 Aug; 130(Pt 8):2085-96. PubMed ID: 17533167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rehabilitation of homonymous hemianopia: insight into blindsight.
    Perez C; Chokron S
    Front Integr Neurosci; 2014; 8():82. PubMed ID: 25374515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.
    Laramée ME; Smolders K; Hu TT; Bronchti G; Boire D; Arckens L
    PLoS One; 2016; 11(7):e0159320. PubMed ID: 27410964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex.
    Jiang F; Stecker GC; Boynton GM; Fine I
    Front Hum Neurosci; 2016; 10():324. PubMed ID: 27458357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Visual Cross-Modal Re-Organization in Children with Cochlear Implants.
    Campbell J; Sharma A
    PLoS One; 2016; 11(1):e0147793. PubMed ID: 26807850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.
    Bonino D; Ricciardi E; Sani L; Gentili C; Vanello N; Guazzelli M; Vecchi T; Pietrini P
    Arch Ital Biol; 2008 Sep; 146(3-4):133-46. PubMed ID: 19378878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cortical Plasticity and Olfactory Function in Early Blindness.
    Araneda R; Renier LA; Rombaux P; Cuevas I; De Volder AG
    Front Syst Neurosci; 2016; 10():75. PubMed ID: 27625596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cross-modal plasticity for sensory and motor activation patterns in blind subjects.
    Gizewski ER; Gasser T; de Greiff A; Boehm A; Forsting M
    Neuroimage; 2003 Jul; 19(3):968-75. PubMed ID: 12880825
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Working memory training integrates visual cortex into beta-band networks in congenitally blind individuals.
    Rimmele JM; Gudi-Mindermann H; Nolte G; Röder B; Engel AK
    Neuroimage; 2019 Jul; 194():259-271. PubMed ID: 30853565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional connectivity between somatosensory and visual cortex in early blind humans.
    Wittenberg GF; Werhahn KJ; Wassermann EM; Herscovitch P; Cohen LG
    Eur J Neurosci; 2004 Oct; 20(7):1923-7. PubMed ID: 15380014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind.
    Voss P; Pike BG; Zatorre RJ
    Brain; 2014 Apr; 137(Pt 4):1224-40. PubMed ID: 24648057
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis and Validation of Cross-Modal Generative Adversarial Network for Sensory Substitution.
    Kim M; Park Y; Moon K; Jeong CY
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34201269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Occipital activation by pattern recognition in the early blind using auditory substitution for vision.
    Arno P; De Volder AG; Vanlierde A; Wanet-Defalque MC; Streel E; Robert A; Sanabria-Bohórquez S; Veraart C
    Neuroimage; 2001 Apr; 13(4):632-45. PubMed ID: 11305892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.