These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27877166)

  • 1. A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of
    Richter H; Molitor B; Diender M; Sousa DZ; Angenent LT
    Front Microbiol; 2016; 7():1773. PubMed ID: 27877166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas.
    Diender M; Stams AJ; Sousa DZ
    Biotechnol Biofuels; 2016; 9():82. PubMed ID: 27042211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Fermentation pH Is a Trigger to Alcohol Production, but a Killer to Chain Elongation.
    Ganigué R; Sánchez-Paredes P; Bañeras L; Colprim J
    Front Microbiol; 2016; 7():702. PubMed ID: 27252682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri.
    Fernández-Blanco C; Veiga MC; Kennes C
    J Environ Manage; 2022 Jan; 302(Pt A):113992. PubMed ID: 34710762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic co-culture of autotrophic Clostridium carboxidivorans and chain elongating Clostridium kluyveri monitored by flow cytometry.
    Bäumler M; Schneider M; Ehrenreich A; Liebl W; Weuster-Botz D
    Microb Biotechnol; 2022 May; 15(5):1471-1485. PubMed ID: 34669248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading syngas fermentation effluent using
    Gildemyn S; Molitor B; Usack JG; Nguyen M; Rabaey K; Angenent LT
    Biotechnol Biofuels; 2017; 10():83. PubMed ID: 28367228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO
    Lauer I; Philipps G; Jennewein S
    Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity.
    Richter H; Loftus SE; Angenent LT
    Environ Technol; 2013; 34(13-16):1983-94. PubMed ID: 24350452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling a co-culture of
    Benito-Vaquerizo S; Diender M; Parera Olm I; Martins Dos Santos VAP; Schaap PJ; Sousa DZ; Suarez-Diez M
    Comput Struct Biotechnol J; 2020; 18():3255-3266. PubMed ID: 33240469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high gas fraction, reduced power, syngas bioprocessing method demonstrated with a Clostridium ljungdahlii OTA1 paper biocomposite.
    Schulte MJ; Wiltgen J; Ritter J; Mooney CB; Flickinger MC
    Biotechnol Bioeng; 2016 Sep; 113(9):1913-23. PubMed ID: 26927418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.
    Chen J; Henson MA
    Metab Eng; 2016 Nov; 38():389-400. PubMed ID: 27720802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu J; Liu Z; Li F
    J Basic Microbiol; 2014 Sep; 54(9):996-1004. PubMed ID: 23720212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Hexanol as the Main Product Through Syngas Fermentation by
    Oh HJ; Ko JK; Gong G; Lee SM; Um Y
    Front Bioeng Biotechnol; 2022; 10():850370. PubMed ID: 35547160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of caproate (hexanoate) production using
    Otten JK; Zou Y; Papoutsakis ET
    Front Bioeng Biotechnol; 2022; 10():965614. PubMed ID: 36072287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of
    Bäumler M; Burgmaier V; Herrmann F; Mentges J; Schneider M; Ehrenreich A; Liebl W; Weuster-Botz D
    Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential Mixed Cultures: From Syngas to Malic Acid.
    Oswald F; Dörsam S; Veith N; Zwick M; Neumann A; Ochsenreither K; Syldatk C
    Front Microbiol; 2016; 7():891. PubMed ID: 27445993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.