These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27877250)

  • 1. Hydrothermal growth of ZnO nanostructures.
    Baruah S; Dutta J
    Sci Technol Adv Mater; 2009 Feb; 10(1):013001. PubMed ID: 27877250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc stannate nanostructures: hydrothermal synthesis.
    Baruah S; Dutta J
    Sci Technol Adv Mater; 2011 Feb; 12(1):013004. PubMed ID: 27877377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review.
    Qin L; Mawignon FJ; Hussain M; Ange NK; Lu S; Hafezi M; Dong G
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application.
    Hsu CL; Chang SJ
    Small; 2014 Nov; 10(22):4562-85. PubMed ID: 25319960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.
    Robak E; Coy E; Kotkowiak M; Jurga S; Załęski K; Drozdowski H
    Nanotechnology; 2016 Apr; 27(17):175706. PubMed ID: 26987563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient synthesis of 3D ZnO nanostructures on ITO surfaces for enhanced photoelectrochemical water splitting.
    Reddy NR; Kumar AS; Reddy PM; Kakarla RR; Jung JH; Aminabhavi TM; Joo SW
    J Environ Manage; 2024 Feb; 352():120082. PubMed ID: 38232595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-Level Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis.
    Kadinskaya SA; Kondratev VM; Kindyushov IK; Koval OY; Yakubovsky DI; Kusnetsov A; Lihachev AI; Nashchekin AV; Akopyan IK; Serov AY; Labzovskaya ME; Mikushev SV; Novikov BV; Shtrom IV; Bolshakov AD
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave assisted hydrothermal method for porous zinc oxide nanostructured-films.
    Ridha NJ; Umar AA; Alosfur F; Jumali MH; Salleh MM
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2667-74. PubMed ID: 23763142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically controllable fabrication of one-dimensional ZnO nanostructures and their applications in solar cells.
    Zhang Y; Heng L; Jiang L
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5597-613. PubMed ID: 25935976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications.
    Wang X; Ahmad M; Sun H
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29137195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Sb in ZnO nanostructures through hydrothermal process.
    Escobedo Morales A; Pal U; Herrera Zaldivar M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6551-7. PubMed ID: 19205239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic ionic liquid assisted hydrothermal synthesis of ZnO nanostructures with controllable morphology.
    Akter M; Faisal MA; Singh AK; Susan MABH
    RSC Adv; 2023 Jun; 13(26):17775-17786. PubMed ID: 37323464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO microstructures and nanostructures prepared by sol-gel hydrothermal technique.
    Kamaruddin SA; Chan KY; Sahdan MZ; Rusop M; Saim H
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5618-22. PubMed ID: 21133082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Synthesis and Applications of ZnO and TiO
    Gonçalves RA; Toledo RP; Joshi N; Berengue OM
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33924397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review.
    Rai RS; P GJ; Bajpai V; Khan MI; Elboughdiri N; Shanableh A; Luque R
    Environ Res; 2023 Mar; 221():114807. PubMed ID: 36455633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable synthesis of ZnO nanostructures on the Si substrate by a hydrothermal route.
    Dong JJ; Zhen CY; Hao HY; Xing J; Zhang ZL; Zheng ZY; Zhang XW
    Nanoscale Res Lett; 2013 Sep; 8(1):378. PubMed ID: 24006928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method.
    Ferreira SH; Morais M; Nunes D; Oliveira MJ; Rovisco A; Pimentel A; Águas H; Fortunato E; Martins R
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34064309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Addition of KI on the Hydrothermal Growth of ZnO Nanostructures Towards Hybrid Optoelectronic Device Applications.
    Bilgaiyan A; Dixit T; Kapil G; Pandey SS; Hayase S; Palani IA; Singh V
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3301-6. PubMed ID: 27451621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.
    Herring NP; Panchakarla LS; El-Shall MS
    Langmuir; 2014 Mar; 30(8):2230-40. PubMed ID: 24555702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method.
    Park GC; Hwang SM; Lim JH; Joo J
    Nanoscale; 2014; 6(3):1840-7. PubMed ID: 24356989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.