These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27877281)

  • 1. Experimental study of organic zero-gap conductor α-(BEDT-TTF)
    Tajima N; Kajita K
    Sci Technol Adv Mater; 2009 Apr; 10(2):024308. PubMed ID: 27877281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the zero-gap organic conductor α-(BEDT-TTF)
    Kobayashi A; Katayama S; Suzumura Y
    Sci Technol Adv Mater; 2009 Apr; 10(2):024309. PubMed ID: 27877282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the zero-mode landau level on interlayer magnetoresistance in multilayer massless Dirac fermion systems.
    Tajima N; Sugawara S; Kato R; Nishio Y; Kajita K
    Phys Rev Lett; 2009 May; 102(17):176403. PubMed ID: 19518803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interacting chiral electrons at the 2D Dirac points: a review.
    Hirata M; Kobayashi A; Berthier C; Kanoda K
    Rep Prog Phys; 2021 Mar; 84(3):. PubMed ID: 33059346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic mobility and carrier dynamics in the
    Sugawara S; Tamura M
    Sci Technol Adv Mater; 2013 Aug; 14(4):045004. PubMed ID: 27877597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of possible nonlinear anomalous Hall effect in organic two-dimensional Dirac fermion system.
    Kiswandhi A; Osada T
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34874281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure effects on Dirac fermions in α-(BEDT-TTF)₂I₃.
    Himura T; Morinari T; Tohyama T
    J Phys Condens Matter; 2011 Nov; 23(46):464202. PubMed ID: 22052807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.
    Assili M; Haddad S
    J Phys Condens Matter; 2013 Sep; 25(36):365503. PubMed ID: 23941870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angle-resolved mapping of the fermi velocity in a quasi-two-dimensional organic conductor.
    Kovalev AE; Hill S; Kawano K; Tamura M; Naito T; Kobayashi H
    Phys Rev Lett; 2003 Nov; 91(21):216402. PubMed ID: 14683322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Quasi-Planar Two-dimensional Carbon Sulfide with Negative Poisson's Ratio and Dirac Fermions.
    Nulakani NVR; Ali MA; Subramanian V
    Chemphyschem; 2023 Nov; 24(21):e202300266. PubMed ID: 37609863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2.
    Liu J; Hu J; Cao H; Zhu Y; Chuang A; Graf D; Adams DJ; Radmanesh SM; Spinu L; Chiorescu I; Mao Z
    Sci Rep; 2016 Jul; 6():30525. PubMed ID: 27466151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective excitations in the charge-ordered phase of α-(BEDT-TTF)2I3.
    Ivek T; Korin-Hamzić B; Milat O; Tomić S; Clauss C; Drichko N; Schweitzer D; Dressel M
    Phys Rev Lett; 2010 May; 104(20):206406. PubMed ID: 20867047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of the Dirac Electron System in a Single-Component Molecular Conductor under High Pressure.
    Kato R; Cui H; Tsumuraya T; Miyazaki T; Suzumura Y
    J Am Chem Soc; 2017 Feb; 139(5):1770-1773. PubMed ID: 28121146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant Density of States Enhancement Driven by a Zero-Mode Landau Level in Semimetallic Black Phosphorus under Pressure.
    Fujii T; Nakai Y; Hirata M; Hasegawa Y; Akahama Y; Ueda K; Mito T
    Phys Rev Lett; 2023 Feb; 130(7):076401. PubMed ID: 36867797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kosterlitz-Thouless-type transition in a charge ordered state of the layered organic conductor α-(BEDT-TTF)2I3.
    Uji S; Kodama K; Sugii K; Takahide Y; Terashima T; Kurita N; Tsuchiya S; Kohno M; Kimata M; Yamamoto K; Yakushi K
    Phys Rev Lett; 2013 May; 110(19):196602. PubMed ID: 23705731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The half-filled Landau level: The case for Dirac composite fermions.
    Geraedts SD; Zaletel MP; Mong RS; Metlitski MA; Vishwanath A; Motrunich OI
    Science; 2016 Apr; 352(6282):197-201. PubMed ID: 27124453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.
    Jeon S; Zhou BB; Gyenis A; Feldman BE; Kimchi I; Potter AC; Gibson QD; Cava RJ; Vishwanath A; Yazdani A
    Nat Mater; 2014 Sep; 13(9):851-6. PubMed ID: 24974888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field.
    Guo D; Kondo T; Machida T; Iwatake K; Okada S; Nakamura J
    Nat Commun; 2012; 3():1068. PubMed ID: 22990864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer quantum transport in Dirac semimetal BaGa
    Xu S; Bao C; Guo PJ; Wang YY; Yu QH; Sun LL; Su Y; Liu K; Lu ZY; Zhou S; Xia TL
    Nat Commun; 2020 May; 11(1):2370. PubMed ID: 32398654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.