These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27877333)

  • 1. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging.
    Yang X; Yu H; Song C; Li L
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel.
    Lee J; Lee T; Mun DJ; Bae CM; Lee CS
    Sci Rep; 2019 Mar; 9(1):5219. PubMed ID: 30914723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels.
    Liu B; Liao X; Tang Y; Si Y; Feng Y; Cao P; Dai Q; Li K
    Scanning; 2022; 2022():4040800. PubMed ID: 35282565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Hot Stamping and Tempering on Hydrogen Embrittlement of a Low-Carbon Boron-Alloyed Steel.
    Zhang Y; Hui W; Zhao X; Wang C; Dong H
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of
    Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Accuracy of Thermal Desorption Spectroscopy by Specimen Cooling during Measurement of Hydrogen Concentration in a High-Strength Steel.
    Fangnon E; Malitckii E; Yagodzinskyy Y; Vilaça P
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Calcareous Deposits on Hydrogen Embrittlement Susceptibility of Q460 Steel.
    Xiong X; Yang H; Chen T; Zhang N; Niu T
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in Hydrogen Trapping Characteristics and Influence on Hydrogen Embrittlement Sensitivity in a Medium-Carbon, High-Strength Steel: The Effects of Heat Treatments.
    Tong Z; Wang H; Zheng W; Zhou H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of undissolved Nb carbides on mechanical properties of hydrogen-precharged tempered martensitic steel.
    Seo HJ; Jo JW; Kim JN; Kwon K; Lee J; Choi S; Lee T; Lee CS
    Sci Rep; 2020 Jul; 10(1):11704. PubMed ID: 32678163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners.
    Brahimi SV; Yue S; Sriraman KR
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Steels Susceptibility to Hydrogen Embrittlement: A Thermal Desorption Spectroscopy-Based Approach Coupled with Artificial Neural Network.
    Malitckii E; Fangnon E; Vilaça P
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Permeation in X65 Steel under Cyclic Loading.
    Cabrini M; Coppola L; Lorenzi S; Testa C; Carugo F; Bucella DP; Pastore T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel.
    Astafurova E; Fortuna A; Melnikov E; Astafurov S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels.
    Liu Q; Xu J; Shen L; Zhou Q; Su Y; Qiao L; Yan Y
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.