These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 27877337)
1. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy. Fukuma T Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337 [TBL] [Abstract][Full Text] [Related]
2. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Fukuma T Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817 [TBL] [Abstract][Full Text] [Related]
3. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy. Fukuma T Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720 [TBL] [Abstract][Full Text] [Related]
4. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy. Fukuma T; Garcia R ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619 [TBL] [Abstract][Full Text] [Related]
5. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces. Miyazawa K; Watkins M; Shluger AL; Fukuma T Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216 [TBL] [Abstract][Full Text] [Related]
6. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation. Miyata K; Tracey J; Miyazawa K; Haapasilta V; Spijker P; Kawagoe Y; Foster AS; Tsukamoto K; Fukuma T Nano Lett; 2017 Jul; 17(7):4083-4089. PubMed ID: 28650174 [TBL] [Abstract][Full Text] [Related]
7. High-Speed Three-Dimensional Scanning Force Microscopy Visualization of Subnanoscale Hydration Structures on Dissolving Calcite Step Edges. Miyata K; Adachi K; Miyashita N; Miyazawa K; Foster AS; Fukuma T Nano Lett; 2024 Sep; 24(35):10842-10849. PubMed ID: 39183640 [TBL] [Abstract][Full Text] [Related]
8. Local analyses of ionic liquid/solid interfaces by frequency modulation atomic force microscopy and photoemission spectroscopy. Fukui K; Yokota Y; Imanishi A Chem Rec; 2014 Oct; 14(5):964-73. PubMed ID: 25130913 [TBL] [Abstract][Full Text] [Related]
9. Hydration Structure of a Single DNA Molecule Revealed by Frequency-Modulation Atomic Force Microscopy. Kuchuk K; Sivan U Nano Lett; 2018 Apr; 18(4):2733-2737. PubMed ID: 29564895 [TBL] [Abstract][Full Text] [Related]
10. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy. Arai T; Koshioka M; Abe K; Tomitori M; Kokawa R; Ohta M; Yamada H; Kobayashi K; Oyabu N Langmuir; 2015 Apr; 31(13):3876-83. PubMed ID: 25790119 [TBL] [Abstract][Full Text] [Related]
11. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy. Guo J; Jiang Y Acc Chem Res; 2022 Jun; 55(12):1680-1692. PubMed ID: 35678704 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. Asakawa H; Yoshioka S; Nishimura K; Fukuma T ACS Nano; 2012 Oct; 6(10):9013-20. PubMed ID: 23013290 [TBL] [Abstract][Full Text] [Related]
13. Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution. Fukuma T; Higgins MJ; Jarvis SP Biophys J; 2007 May; 92(10):3603-9. PubMed ID: 17325013 [TBL] [Abstract][Full Text] [Related]
14. Gas molecules sandwiched in hydration layers at graphite/water interfaces. Teshima H; Li QY; Takata Y; Takahashi K Phys Chem Chem Phys; 2020 Jun; 22(24):13629-13636. PubMed ID: 32519700 [TBL] [Abstract][Full Text] [Related]
15. Atomic-Scale 3D Local Hydration Structures Influenced by Water-Restricting Dimensions. Umeda K; Kobayashi K; Minato T; Yamada H Langmuir; 2018 Aug; 34(31):9114-9121. PubMed ID: 29985633 [TBL] [Abstract][Full Text] [Related]
16. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy. Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750 [TBL] [Abstract][Full Text] [Related]
17. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water. Cao D; Song Y; Tang B; Xu L Front Chem; 2021; 9():745446. PubMed ID: 34631666 [TBL] [Abstract][Full Text] [Related]
18. Observing the repulsion layers on blood-compatible polymer-grafted interfaces by frequency modulation atomic force microscopy. Murakami D; Nishimura SN; Tanaka Y; Tanaka M Biomater Adv; 2022 Feb; 133():112596. PubMed ID: 35527138 [TBL] [Abstract][Full Text] [Related]
19. Atomic-scale structure of interfacial water on gel and liquid phase lipid membranes. Benaglia S; Read H; Fumagalli L Faraday Discuss; 2024 Feb; 249(0):453-468. PubMed ID: 37781876 [TBL] [Abstract][Full Text] [Related]
20. Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy. Miyata K; Fukuma T Beilstein J Nanotechnol; 2018; 9():1844-1855. PubMed ID: 30013878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]