These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 27877347)
1. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Wan C; Wang Y; Wang N; Norimatsu W; Kusunoki M; Koumoto K Sci Technol Adv Mater; 2010 Aug; 11(4):044306. PubMed ID: 27877347 [TBL] [Abstract][Full Text] [Related]
3. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Wan C; Gu X; Dang F; Itoh T; Wang Y; Sasaki H; Kondo M; Koga K; Yabuki K; Snyder GJ; Yang R; Koumoto K Nat Mater; 2015 Jun; 14(6):622-7. PubMed ID: 25849369 [TBL] [Abstract][Full Text] [Related]
4. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. He J; Sootsman JR; Girard SN; Zheng JC; Wen J; Zhu Y; Kanatzidis MG; Dravid VP J Am Chem Soc; 2010 Jun; 132(25):8669-75. PubMed ID: 20524606 [TBL] [Abstract][Full Text] [Related]
5. Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides. Yin C; Liu H; Hu Q; Tang J; Pei Y; Ang R ACS Appl Mater Interfaces; 2019 Dec; 11(51):48079-48085. PubMed ID: 31774649 [TBL] [Abstract][Full Text] [Related]
6. Phonon transport and thermoelectric properties of semiconducting Bi Rashid Z; Nissimagoudar AS; Li W Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478 [TBL] [Abstract][Full Text] [Related]
7. Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated Ti Zhang M; Zhang C; You Y; Xie H; Chi H; Sun Y; Liu W; Su X; Yan Y; Tang X; Uher C ACS Appl Mater Interfaces; 2018 Sep; 10(38):32344-32354. PubMed ID: 30160096 [TBL] [Abstract][Full Text] [Related]
8. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458 [TBL] [Abstract][Full Text] [Related]
9. The impact of charge transfer and structural disorder on the thermoelectric properties of cobalt intercalated TiS Guélou G; Vaqueiro P; Prado-Gonjal J; Barbier T; Hébert S; Guilmeau E; Kockelmann W; Powell AV J Mater Chem C Mater; 2016 Mar; 4(9):1871-1880. PubMed ID: 27774151 [TBL] [Abstract][Full Text] [Related]
10. Organic-SnSe Liang J; Li Y; Yin S; Wan C ACS Appl Mater Interfaces; 2023 Jul; 15(29):34956-34963. PubMed ID: 37432670 [TBL] [Abstract][Full Text] [Related]
11. Layered Tin Chalcogenides SnS and SnSe: Lattice Thermal Conductivity Benchmarks and Thermoelectric Figure of Merit. Rundle J; Leoni S J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(33):14036-14046. PubMed ID: 36051253 [TBL] [Abstract][Full Text] [Related]
12. Nanotubes from Misfit Layered Compounds: A New Family of Materials with Low Dimensionality. Panchakarla LS; Radovsky G; Houben L; Popovitz-Biro R; Dunin-Borkowski RE; Tenne R J Phys Chem Lett; 2014 Nov; 5(21):3724-36. PubMed ID: 26278742 [TBL] [Abstract][Full Text] [Related]
13. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508 [TBL] [Abstract][Full Text] [Related]
14. Tuning phonon transport spectrum for better thermoelectric materials. Hori T; Shiomi J Sci Technol Adv Mater; 2019; 20(1):10-25. PubMed ID: 31001366 [TBL] [Abstract][Full Text] [Related]
15. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727 [TBL] [Abstract][Full Text] [Related]
16. Impressive Thermoelectric Figure of Merit in Two-Dimensional Tetragonal Pnictogens: a Combined First-Principles and Machine-Learning Approach. Ghosal S; Chowdhury S; Jana D ACS Appl Mater Interfaces; 2021 Dec; 13(49):59092-59103. PubMed ID: 34843210 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Thermoelectric Properties of Misfit Bi Chatterjee A; Banik A; El Sachat A; Caicedo Roque JM; Padilla-Pantoja J; Sotomayor Torres CM; Biswas K; Santiso J; Chavez-Angel E Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837043 [TBL] [Abstract][Full Text] [Related]
18. Direct Probing of Cross-Plane Thermal Properties of Atomic Layer Deposition Al Park NW; Lee WY; Yoon YS; Ahn JY; Lee JH; Kim GS; Kim TG; Choi CJ; Park JS; Saitoh E; Lee SK ACS Appl Mater Interfaces; 2018 Dec; 10(51):44472-44482. PubMed ID: 30507128 [TBL] [Abstract][Full Text] [Related]
19. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study. Guo SD; Zhang AX; Li HC Nanotechnology; 2017 Nov; 28(44):445702. PubMed ID: 28825405 [TBL] [Abstract][Full Text] [Related]
20. Nanostructured Ferecrystal Intergrowths with TaSe Taneja V; Goyal N; Das S; Chandra S; Dutta P; Ravishankar N; Biswas K J Am Chem Soc; 2024 Sep; 146(35):24716-24723. PubMed ID: 39167763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]