These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27877359)

  • 1. A study of the synthetic methods and properties of graphenes.
    Rao CN; Subrahmanyam KS; Ramakrishna Matte HS; Abdulhakeem B; Govindaraj A; Das B; Kumar P; Ghosh A; Late DJ
    Sci Technol Adv Mater; 2010 Oct; 11(5):054502. PubMed ID: 27877359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and selected properties of graphene and graphene mimics.
    Rao CN; Matte HS; Subrahmanyam KS
    Acc Chem Res; 2013 Jan; 46(1):149-59. PubMed ID: 22738406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Birch-Type Hydrogenation of Few-Layer Graphenes: Products and Mechanistic Implications.
    Zhang X; Huang Y; Chen S; Kim NY; Kim W; Schilter D; Biswal M; Li B; Lee Z; Ryu S; Bielawski CW; Bacsa WS; Ruoff RS
    J Am Chem Soc; 2016 Nov; 138(45):14980-14986. PubMed ID: 27934214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation.
    Jung N; Kim N; Jockusch S; Turro NJ; Kim P; Brus L
    Nano Lett; 2009 Dec; 9(12):4133-7. PubMed ID: 19827759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.
    Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M
    Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanical cleavage method for synthesizing few-layer graphenes.
    Jayasena B; Subbiah S
    Nanoscale Res Lett; 2011 Jan; 6(1):95. PubMed ID: 21711598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat conduction across monolayer and few-layer graphenes.
    Koh YK; Bae MH; Cahill DG; Pop E
    Nano Lett; 2010 Nov; 10(11):4363-8. PubMed ID: 20923234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium.
    Poh HL; Sofer Z; Luxa J; Pumera M
    Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties.
    Poh HL; Šaněk F; Ambrosi A; Zhao G; Sofer Z; Pumera M
    Nanoscale; 2012 Jun; 4(11):3515-22. PubMed ID: 22535381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the electrical properties of graphene layers by molecular doping.
    Singh AK; Ahmad M; Singh VK; Shin K; Seo Y; Eom J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5276-81. PubMed ID: 23676855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards graphene iodide: iodination of graphite oxide.
    Šimek P; Klímová K; Sedmidubský D; Jankovský O; Pumera M; Sofer Z
    Nanoscale; 2015 Jan; 7(1):261-70. PubMed ID: 25407247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.
    Moo JG; Ambrosi A; Bonanni A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical and Electrical Characteristics of Graphene Double Layer Formed by a Double Transfer of Graphene Single Layers.
    Kim YJ; Bae GY; Chun S; Park W
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2769-72. PubMed ID: 27455706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of photocatalysis reactions on the single-crystal and polycrystalline graphenes.
    Wei Y; Jiang C; Zhang Y; Li X; Zhang L; Wang P; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119441. PubMed ID: 33461137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thickness-dependent morphologies of gold on n-layer graphenes.
    Zhou H; Qiu C; Liu Z; Yang H; Hu L; Liu J; Yang H; Gu C; Sun L
    J Am Chem Soc; 2010 Jan; 132(3):944-6. PubMed ID: 20030310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-flexibility and unusual electronic, magnetic and chemical properties of waved graphenes and nanoribbons.
    Pan H; Chen B
    Sci Rep; 2014 Feb; 4():4198. PubMed ID: 24569444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates.
    Li XL; Qiao XF; Han WP; Lu Y; Tan QH; Liu XL; Tan PH
    Nanoscale; 2015 May; 7(17):8135-41. PubMed ID: 25875074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials.
    Navalón S; Herance JR; Álvaro M; García H
    Chemistry; 2017 Nov; 23(61):15244-15275. PubMed ID: 28544022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality Graphenes via a facile quenching method for field-effect transistors.
    Tang YB; Lee CS; Chen ZH; Yuan GD; Kang ZH; Luo LB; Song HS; Liu Y; He ZB; Zhang WJ; Bello I; Lee ST
    Nano Lett; 2009 Apr; 9(4):1374-7. PubMed ID: 19301858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.