These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27877363)

  • 1. Plasmons in nanoscale and atomic-scale systems.
    Nagao T; Han G; Hoang C; Wi JS; Pucci A; Weber D; Neubrech F; Silkin VM; Enders D; Saito O; Rana M
    Sci Technol Adv Mater; 2010 Oct; 11(5):054506. PubMed ID: 27877363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons.
    Teperik TV; Popov VV; García de Abajo FJ; Abdelsalam M; Bartlett PN; Kelf TA; Sugawara Y; Baumberg JJ
    Opt Express; 2006 Mar; 14(5):1965-72. PubMed ID: 19503527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization conversion through collective surface plasmons in metallic nanorod arrays.
    Kullock R; Hendren WR; Hille A; Grafström S; Evans PR; Pollard RJ; Atkinson R; Eng LM
    Opt Express; 2008 Dec; 16(26):21671-81. PubMed ID: 19104599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Processes behind Plasmonic Applications.
    Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes.
    Lagos MJ; Bicket IC; Mousavi M SS; Botton GA
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i174-i199. PubMed ID: 35275180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy.
    Tizei LHG; Mkhitaryan V; Lourenço-Martins H; Scarabelli L; Watanabe K; Taniguchi T; Tencé M; Blazit JD; Li X; Gloter A; Zobelli A; Schmidt FP; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2020 May; 20(5):2973-2979. PubMed ID: 31967839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically localized plasmon enhancement in monolayer graphene.
    Zhou W; Lee J; Nanda J; Pantelides ST; Pennycook SJ; Idrobo JC
    Nat Nanotechnol; 2012 Jan; 7(3):161-5. PubMed ID: 22286496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient generation of propagating plasmons by electron beams.
    Cai W; Sainidou R; Xu J; Polman A; García de Abajo FJ
    Nano Lett; 2009 Mar; 9(3):1176-81. PubMed ID: 19227997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy.
    Urbieta M; Barbry M; Koval P; Rivacoba A; Sánchez-Portal D; Aizpurua J; Zabala N
    Phys Chem Chem Phys; 2024 May; 26(20):14991-15004. PubMed ID: 38741574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particles and nanovoids for plasmonics.
    Sierra-Martin B; Fernandez-Barbero A
    Adv Colloid Interface Sci; 2021 Apr; 290():102394. PubMed ID: 33711675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab.
    Christ A; Tikhodeev SG; Gippius NA; Kuhl J; Giessen H
    Phys Rev Lett; 2003 Oct; 91(18):183901. PubMed ID: 14611284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.