These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27877363)

  • 21. Antenna surface plasmon emission by inelastic tunneling.
    Zhang C; Hugonin JP; Coutrot AL; Sauvan C; Marquier F; Greffet JJ
    Nat Commun; 2019 Oct; 10(1):4949. PubMed ID: 31666511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle-mediated coupling of light into a nanowire.
    Knight MW; Grady NK; Bardhan R; Hao F; Nordlander P; Halas NJ
    Nano Lett; 2007 Aug; 7(8):2346-50. PubMed ID: 17629348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.
    Wen F; Zhang Y; Gottheim S; King NS; Zhang Y; Nordlander P; Halas NJ
    ACS Nano; 2015 Jun; 9(6):6428-35. PubMed ID: 25986388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure.
    Chen J; Wang P; Zhang ZM; Lu Y; Ming H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor.
    Ren W; Dai Y; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2013 Apr; 21(8):10251-8. PubMed ID: 23609734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SPP standing waves within plasmonic nanocavities.
    Yang DJ; Ding SJ; Ma L; Mu QX; Wang QQ
    Opt Express; 2022 Nov; 30(24):44055-44070. PubMed ID: 36523089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualizing surface plasmons with photons, photoelectrons, and electrons.
    El-Khoury PZ; Abellan P; Gong Y; Hage FS; Cottom J; Joly AG; Brydson R; Ramasse QM; Hess WP
    Analyst; 2016 Jun; 141(12):3562-72. PubMed ID: 27067797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A plethora of plasmonics from the laboratory for nanophotonics at Rice University.
    Halas NJ; Lal S; Link S; Chang WS; Natelson D; Hafner JH; Nordlander P
    Adv Mater; 2012 Sep; 24(36):4842-77, 4774. PubMed ID: 22858826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Standing wave plasmon modes interact in an antenna-coupled nanowire.
    Day JK; Large N; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1324-30. PubMed ID: 25565116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy.
    Yankovich AB; Munkhbat B; Baranov DG; Cuadra J; Olsén E; Lourenço-Martins H; Tizei LHG; Kociak M; Olsson E; Shegai T
    Nano Lett; 2019 Nov; 19(11):8171-8181. PubMed ID: 31639311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron energy-loss spectroscopy of branched gap plasmon resonators.
    Raza S; Esfandyarpour M; Koh AL; Mortensen NA; Brongersma ML; Bozhevolnyi SI
    Nat Commun; 2016 Dec; 7():13790. PubMed ID: 27982030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing Short-Range Surface Plasmons in Planar Silver Films via Disorder-Engineered Metasurfaces.
    Buchmüller M; Shutsko I; Schumacher SO; Görrn P
    ACS Appl Opt Mater; 2023 Nov; 1(11):1777-1782. PubMed ID: 38037654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional light emission from propagating surface plasmons of silver nanowires.
    Li Z; Hao F; Huang Y; Fang Y; Nordlander P; Xu H
    Nano Lett; 2009 Dec; 9(12):4383-6. PubMed ID: 19769338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices.
    Sukham J; Takayama O; Lavrinenko AV; Malureanu R
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):25049-25056. PubMed ID: 28682054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient single photon emission and collection based on excitation of gap surface plasmons.
    Lian H; Gu Y; Ren J; Zhang F; Wang L; Gong Q
    Phys Rev Lett; 2015 May; 114(19):193002. PubMed ID: 26024170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.