BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27877422)

  • 1. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds.
    Román J; Cabañas MV; Peña J; Vallet-Regí M
    Sci Technol Adv Mater; 2011 Aug; 12(4):045003. PubMed ID: 27877422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature.
    Peña J; Román J; Victoria Cabañas M; Vallet-Regí M
    Acta Biomater; 2010 Apr; 6(4):1288-96. PubMed ID: 19887122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique.
    Lv Q; Feng Q
    J Mater Sci Mater Med; 2006 Dec; 17(12):1349-56. PubMed ID: 17143767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering.
    Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of porous gelatin scaffolds for tissue engineering.
    Kang HW; Tabata Y; Ikada Y
    Biomaterials; 1999 Jul; 20(14):1339-44. PubMed ID: 10403052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair.
    Mahmood SK; Zakaria MZAB; Razak ISBA; Yusof LM; Jaji AZ; Tijani I; Hammadi NI
    Biochem Biophys Rep; 2017 Jul; 10():237-251. PubMed ID: 28955752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.
    Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q
    J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between crosslinking and ice nucleation controls the porous structure of freeze-dried hydrogel scaffolds.
    Grenier J; Duval H; Lv P; Barou F; Le Guilcher C; Aid R; David B; Letourneur D
    Biomater Adv; 2022 Aug; 139():212973. PubMed ID: 35891598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D interconnected porous biomimetic scaffolds: In vitro cell response.
    Panzavolta S; Torricelli P; Amadori S; Parrilli A; Rubini K; della Bella E; Fini M; Bigi A
    J Biomed Mater Res A; 2013 Dec; 101(12):3560-70. PubMed ID: 23629945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects.
    Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z
    Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Templating of Extrinsic Freeze-Casting for Macro-Microporous Biomaterials.
    Jung JY; Naleway SE; Maker YN; Kang KY; Lee J; Ha J; Hur SS; Chien S; McKittrick J
    ACS Biomater Sci Eng; 2019 May; 5(5):2122-2133. PubMed ID: 33405715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.