These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27877618)

  • 1. Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO
    Liu X; Kitamura K; Yu Q; Xu J; Osada M; Takahiro N; Li J; Cao G
    Sci Technol Adv Mater; 2013 Oct; 14(5):055011. PubMed ID: 27877618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferroelectric-assisted gold nanoparticles array for centimeter-scale highly reproducible SERS substrates.
    Liu X; Osada M; Kitamura K; Nagata T; Si D
    Sci Rep; 2017 Jun; 7(1):3630. PubMed ID: 28620179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array.
    Chan TY; Liu TY; Wang KS; Tsai KT; Chen ZX; Chang YC; Tseng YQ; Wang CH; Wang JK; Wang YL
    Nanoscale Res Lett; 2017 Dec; 12(1):344. PubMed ID: 28494572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.
    Fu Q; Zhan Z; Dou J; Zheng X; Xu R; Wu M; Lei Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13322-8. PubMed ID: 26023763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for fabricating the surface-enhanced Raman scattering substrates and its enhanced properties.
    Li J; Xu X; Wang B; Wang Y; Wang L; Zhang C; Sun J
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7774-7. PubMed ID: 21138030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using polycarbonate membranes as templates for the preparation of Au nanostructures for surface-enhanced Raman scattering.
    Batista EA; dos Santos DP; Andrade GF; Sant'Ana AC; Brolo AG; Temperini ML
    J Nanosci Nanotechnol; 2009 May; 9(5):3233-8. PubMed ID: 19452996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.
    Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V
    J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications.
    Chen J; Li Y; Huang K; Wang P; He L; Carter KR; Nugen SR
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22106-13. PubMed ID: 26402032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays.
    Luo S; Mancini A; Lian E; Xu W; Berté R; Li Y
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.
    Gisbert Quilis N; Lequeux M; Venugopalan P; Khan I; Knoll W; Boujday S; Lamy de la Chapelle M; Dostalek J
    Nanoscale; 2018 May; 10(21):10268-10276. PubMed ID: 29790495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement.
    Leopold N; Stefancu A; Herman K; Tódor IS; Iancu SD; Moisoiu V; Leopold LF
    Beilstein J Nanotechnol; 2018; 9():2236-2247. PubMed ID: 30202692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZnGa₂O₄ nanorod arrays decorated with Ag nanoparticles as surface-enhanced Raman-scattering substrates for melamine detection.
    Chen L; Jiang D; Liu X; Qiu G
    Chemphyschem; 2014 Jun; 15(8):1624-31. PubMed ID: 24677318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotip-assisted photoreduction of silver nanostructures on chemically patterned ferroelectric crystals for surface enhanced Raman scattering.
    Wang TJ; Chang HW; Chen JS; Chiang HP
    Sci Rep; 2019 Jul; 9(1):10962. PubMed ID: 31358870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.